Big Data Science

Prof.dr.ir. Geert-Jan Houben

TU Delft
Web Information Systems
Delft Data Science
KIVI chair Big Data Science

big data: it's there, it's important

it is interesting to study it, to **understand** it, and to know how to **engineer** it

scientifically, we are driven by many questions and unprecedented challenges

Questions driving Big Data Science

100 billions in economic and societal **value**

millions of new jobs and millions of new talent to educate in **technology** to get knowledge and value out of big data

often, (massive amounts of) data from **outside** the system with properties that systems are grappling with – "data, too big to handle"

Big Data can fuel our economy & society

- decentralized & sustainable energy systems
- smart mobility
- personalized health
- smart industry
- digital society
- smart enterprises
- integral water management
- secure society
- intelligent living environments

Smart sectors rely on Big Data

typically information technology, **computing** science, and a natural focus on software

the complexity is thought to be in **efficiency**

a **prescriptive** design approach: closed, fixed, centralized

data representing the 'world' is **made** to fit the software

Traditional role of data

the Web brought linking data & connecting it to people for adaptation: utility

a **descriptive** approach: open, dynamic, decentralized

an **unprecedented** source of data about the 'world' (that people are part of) -"big data, too big to handle"

Web & Data

technology to handle big data asks for a **fundamentally** new computing science

digital (Web) data and its descriptions of the world bring a new **complexity**

to make sense of the data, data science is all about Semantics, w. Scale, Speed & Sustainability

Complexity in data

data science is a new scientific discipline for scientific understanding and creating technology for how to create, process, and understand digital data

data science is the foundational discipline for **engineering** data-driven systems

Data Science for advancing technology

big data sets can be interpreted with **new scientific methods**

the world can be observed in **more detail**, leading to new knowledge and insight, and potentially better products, service or decisions

more detailed reflections of the world come with **new** questions

Data reflects the world

how to **conclude** from heterogeneous, incomplete, unverifiable, sensitive, distributed data with **unknown** errors?

how to relate big data to **small** data?

how to **check** and **repeat** analyses?

Unprecedented reflections

how to prevent **false** conclusions?

how to answer questions without revealing **secrets**?

how to answer questions without stopping **time**?

how to handle **ownership** of data and satisfy personal and legal **contexts**?

Unprecedented reflections

TU Delft coordinating initiative for research, education and training in data science and technology

Delft Data Science – research & education for technology & talent

Delft Data Science

Data Processing

Data Analytics

Challenges

Hardware

Software

Data Management

Focus: Humans & Analytics Technology

Visualization

Social Data Analytics

Medical Delta

AMS

Extension School

HSD

Hardware for Data Science

Big Data Computing Systems:

application specific computing systems and hardware

New Algorithms & Architectures: application and domain specific e.g. finance/bio-informatics/seismic

Enabling big data computing systems to adapt to the challenges

Software for Data Science

Problem: programming multi-core distributed cloud machines with Von Neumann programming languages

Problem: data engineers and scientists not trained as software engineers

Solution: programming languages that abstract from hardware, close to domain

experts

Cloud Programming:

composing computations using mathematically solid foundations

reactive extensions

interactive extensions

Domain-Specific Languages:

enabling software engineers to systematically design & apply DSLs

Enabling programmability of big data analytics

Data Management for Data Science

Enabling big data management at scale and with human interpretation

Visualisation for Data Science

Big Data Visualisation:

for real-time visual analytics e.g. medicine, environment

Big Data Interaction:

for intuitive big data exploration and manipulation

Enabling big data visual analytics

Science of Social Data

Opportunity:

data generated by humans, (re)presenting their take on the world

Challenge: largest source ever made, with yet-to-discover semantics

Social Data Analytics Machines:

repurposing social data that is out there, in controlled & well-understood manner

- Emergencies & incidents
- Intelligent cities
- Massive online education

Data Creation & Interpretation Machines:

including humans & human computing helping software in pro-actively creating & interpreting social data

- Social sensing
- Workforce engagement
- Crowd annotation & knowledge creation

Unlocking human-generated data

Example: Online Education

Learning analytics

with Delft Extension School for Open & Online Education

analytics to make online education truly **learner-centric** and to adapt to the students & their backgrounds

massive online education is about massively adapting to the context of use

with increasing diversity comes importance of social and cultural features: **inclusion**

Science of social data

- 1. Social data gives us one of the **largest reflections** of the world, but/and it is a **man-made** reflection *'unique opportunity turning into interesting research problem'*
- 2. Sense & value come from big data, but even more so from what (software and human-enhanced) **machines** can make of the data V = M * D
- 3. The **power** of what machines can do with the data needs to be well-understood and transparent for solid engineering and uptake 'what machines can do and what they cannot do'
- 4. Science and technology follow the principles of the **Web** *'fundamental & experimental'*

Data Science for Intelligent
Cities
Data Science for

Environmental Monitoring

Data Science for Finance

Data Science for Health

Data Science for **Online**

Education

Data Science for **Cybersecurity**

Data Science in Open Data

Data Science for Workforce

Management

. . .

Delft Data Science & domains

data science comes with **new methods** for doing science and new **ways** to **collaborate**

data science labs are in-situ

data science research shows the importance of **local understanding** of how to apply [seemingly global] technology

New scientific methods & collaborations

Research Agenda

Over the coming years, researchers engage with engineers for inspiration, experimentation, and valorization.

We invite to collaborate.

Next?

Today, the first three master classes.

Get introduced to three branches of data science.

Engage with this research after today.

Alexandru Iosup

Scalable High Performance Systems

Scientific and Societal Challenges

How to massivize datacenters?

- Super-scalable, super-flexible, yet efficient
- End-to-end automation
- Dynamic workloads
- Evolving hardware and software
- Strict performance, cost, energy, reliability, and fairness requirements

The quadruple helix: prosperous society & blooming economy & inventive academia & wise governance

- Enable data access & processing as a fundamental right in Europe
- Enable big science and engineering (2020: €100 bn., 1 mil. jobs)
- "To out-compute is to out-compete", but with energy footprint <5%
- Keep Internet-services affordable yet high quality in Europe
- The Schiphol of computation: Netherlands as a world-wide ICT hub

Alessandro Bozzon

Crowdsourcing in Enterprise Environments

Challenges

Scientific Challenge:

 How can humans and machines better collaborate in computation problems?

Societal (and business) challenges

- Knowledge Creation
- Inclusion and Well-being
- Employment

Zaid Al-Ars

Acceleration of Personalized Medicine Applications

Scientific and societal challenges

- Urgent clinical diagnostics, for example
 - Targeted cancer & neo-natal diagnostics
 - → We provide techniques to <u>reduce compute time</u>
- Cost prohibitive for society
 - More patients & diseases to be treated
 - → We provide techniques to <u>reduce cost</u>

COMPUTE COST

COMPUTE TIME

gjhouben.nl wis.ewi.tudelft.nl delftdatascience.tudelft.nl

