Spykerprijs 2009-2010, Maastricht

Reducing Steering Wheel Stiffness is beneficial in Supporting Evasive Maneuvers

Mauro della Penna, M.M. van Paassen, Mark Mulder & David A. Abbink

Presentor

- David Abbink, PhD
- Assistant Professor @ BioMechanical Engineering, Delft University of Technology
- d.a.abbink@tudelft.nl

Mauro della Penna - Reducing Steering Wheel Stiffness

Background: How do we combine the best of human and machine?

Mauro della Penna - Reducing Steering Wheel Stiffness 2

Automation

Mauro della Penna - Reducing Steering Wheel Stiffness

Haptic Shared Control

TUDelft

Mauro della Penna - Reducing Steering Wheel Stiffness 4

Haptic Shared Control

Mauro della Penna - Reducing Steering Wheel Stiffness

Example of "Normal Guidance"

Abbink & Mulder (2009) – Exploring the dimensions of haptic feedback support in manual control

Joint patent with Nissan (2008)

Problem Statement

Limitation: Support for only one path Problem: How to support multiple paths?

- No automation, human should make the choice
 - Creative solutions may be needed
 - Liability
- So, design should connect to previous haptic work at Delft

Mauro della Penna - Reducing Steering Wheel Stiffness

Design Concept: Reducing Stiffness

Idea

Reduce stiffness

- criticality will be felt when trying to steer
- easier to steer left or right

Design Concept: Reducing Stiffness

Stiffness

Can become negative in extreme cases a choosing human is supported to avoid obstacle, and is then "caught" by the support a stubborn human needs to increase own stiffness to avoid steering left or right

4 UDelft

Mauro della Penna - Reducing Steering Wheel Stiffness 11 |19

Final System Design

- Algorithm makes a smooth transition between the three lines
- Shape adapts online, depending on available time to choose (Steering Time Window)
- Also takes into account the initial heading, velocity and position of the vehicle with respect to the object
- For details, see publication: Della Penna (2010) – "Reducing Steering Wheel Stiffness is beneficial in Supporting Evasive Maneuvers". IEEE SMC Conference Istanbul

Experimental Study

Mauro della Penna - Reducing Steering Wheel Stiffness 13 | 19

Experimental Setup

- Fixed-base driving simulator at Delft
- Subject controls and receives feedback by active steering wheel
- Controlled vehicle dynamics are a second-order system
- Visualization by beamer
- Simplified scenario in order to generalize findings
- Task avoid obstacle, and avoid red bounds
 - left or right does not matter

Experimental Conditions

Subjects

• Ten subjects (2 female)

Condition: Obstacle time-to-contact (TTC)

- Seven TTC levels were chosen between
 - TTC = 1 sec (extremely critical)
 - TTC = 6 sec (relaxed avoidance possible)

Condition: Feedback provided to the driver

- Visual only (baseline)
- Visual and haptic feedback (normal system use)
- Haptic feedback only (visual inattention)

Experimental Results - Performance

System improved safety distance

- Baseline: often unable to avoid objects
- Support system: with or without visual feedback – objects more often avoided, with a larger safe distance

System reduced crashes

• (45% -> 15%)

System caused smaller response time

• (500 ms -> 250 ms)

Experimental Results – Control Effort

Control effort

STD of angle and torques

- Decreased in critical situations
- Increased slightly in non-critical situations
 - Better path generation for human is needed when they have more time to choose

Conclusions

System is very beneficial in critical cases

- Design keeps keeps human fully in the loop
 - Allows human to choose best escape route
 - Then supports that choice, avoiding overshoot
 - If no choice is made, reduced stiffness facilitates a choice
 - Then supports that choice, avoiding overshoot
- Experimental results show that the system:
 - Substantially reduced the amount of crashes
 - Reduced control activity and control effort
 - Did not deteriate overshoot after the initial maneuver
 - Decreased the response time to appearing object
 - Suggests it allows the use of reflexive response

2010 Apr - A patent on this idea was filed 2010 Oct - A conference publication at IEEE SMC Journal publication in progress

Questions & Discussion?

You can also email me!

David Abbink Delft University of Technology

d.a.abbink@tudelft.nl

Mauro della Penna - Reducing Steering Wheel Stiffness 19 |19

Haptic Shared Control Metaphor

"Horse Metaphor", by Frank Flemisch & Ken Goodrich

Flemisch et al. (2003). Nasa Report about the H-mode.

Goodrich et al. (2008). Piloted evaluation of the H-mode. AIAA Conference

Mauro della Penna - Reducing Steering Wheel Stiffness 20 19

Delft Approach to Haptic Shared Control

Human

Can generate forces Can modify impedance resist forces, relax, give way to forces

Machine

Can generate feedback forces Should also modify impedance?

Abbink (2006) – Phd Thesis on Neuromuscular Analysis of Haptic Feedback Mugge & Abbink (2010) – Experimental Brain Research

Mauro della Penna - Reducing Steering Wheel Stiffness 21 | 19

Delft Approach to Haptic Shared Control

Abbink & Mulder (2009) – Exploring the dimensions of haptic feedback support in manual control

Joint patent with Nissan (2008)

Experimental Results – response time

Response Time

Mauro della Penna - Reducing Steering Wheel Stiffness 23 |19