Design of Arctic Mobile Offshore Drilling Unit

KIVI NIRIA

Alexei Bereznitski Huisman Equipment B.V.

Arctic Battle

170 jaar TU Delft

Symposium - 8 March 2012

Contents

- Introduction
- Existing design solutions
- Concept of JBF Arctic
- Seakeeping
- Performance in ice
- Mooring
- Drilling

Arctic

Drilling in Arctic

- Low temperatures
- High winds
- Snow
- Remote areas / lack of infrastructure
- Ice covered waters in winter season
- Extreme waves in open water season

Are there technical solutions for all the year round operations?

Existing design solutions (floating structures)

Existing design solutions (floating structures)

Huisman

Existing design solutions (floating structures)

Why round shape for drilling unit?

JBF Arctic: Idea of the concept

Huisman

JBF Arctic: Main Particulars

JBF Arctic

Ice draft (excellent ice resistance)

Operating in waves draft (excellent seakeeping performance)

Motions

Model tests showed:

- No significant non-linear effects were observed
- Air gap was found to be sufficient
- As expected the model tests confirmed good seakeeping performance of the unit as predicted earlier by numerical analysis

Transit draft (Hs=5m)

Operating draft (Hs=7.5m)

uisman

Survival draft (Hs=17.4m)

Ice draft (Hs=5m)

Optimization of hull shape

Current design

Model 3

Model 6

Model 4

Model 7

Model 2

Model 5

Optimization of hull shape

Optimization of hull shape

Model tests in ice December 2010 in Krylov Shipbuilding Research Institute in Saint-Petersburg

Date	Field No.	Draft	Ice thickness, m	Ice conditions
08.12.2010	1	Transit draft	1.0	Level ice
				Channel (40m) behind ice-breaker in level ice
				Broken ice (100 m)
				Broken ice (30 m)
10.12.2010	2	Transit draft	2.0	2 channels behind ice-breakers in level ice
				Broken ice (100 m)
				Broken ice (30 m)
15.12.2010	3	Operational ice draft	1.5	Level ice
				Level ice
				Broken ice (100 m)
17.12.2010	4	Operational ice draft	2.0	Level ice
				Level ice
				Broken ice (100 m)
22.12.2010	5	Operational ice draft	3.0 (consolidated layer)	Broken hummock, keel depth 18 m
				Broken hummock, keel depth 10 m

Additional test in March 2011, level ice 3.0m thick

Mooring

- Mooring system provides restoring of 47MN to 52MN depending on the water depth in the range from 200m to 850m (ABS static safety factor 2.0).
- This allows to withstand ice of 2.5m (up to 3.0m) at low drift speeds:

Mooring

16 (20) chain-polyester-chain lines

JBF Arctic

JBF Arctic – Dual Drilling Activity

Two wells can be drilled simultaneously

- Increase of efficiency
- Minimize the time required for drilling

JBF Arctic – Handling Principle

JBF Arctic – BOP Handling

JBF Arctic – Dual Drilling Activity

Dual drilling tower containing:

- 2 x Dual drum drawworks with AHC
- 2 x Dual passive compensators
- 2 x Splittable blocks system
- 2 x Riser tensioning system
- 2 x Drillers cabin
- 2 x BOP garage

The large drill floor shares:

- 3 x pipe rackers
- Large drill pipe setback area
- Large casing setback area

All equipment inside protected environment

JBF Arctic – Closed Working Areas

Huisman

JBF Arctic – Isolated Enclosure

Full enclosure with isolation

- Around drilling tower and riser tensioners
- Over riser hold with large doors for loading risers
- Over pipe hold with double doors and airlock for loading tubulars
- Personnel friendly working environment
- No dropped ice on working floors
- Safety, efficiency, working environment

JBF Arctic – Containerized tubular handling

Containerized tubular handling

- Reduced number of crane movements
- Less damage
- Increased weather window
- Improved logistics
- Remote controlled pickup, 100% hands off
- No personnel in pipe hold
- Safer handling on supply boats
- Safety, efficiency

Independent operation: fuel supply?

Drilling in ice and in open waters

Worldwide Lifting, Drilling and Subsea Solutions

Thank you for your attention

References

- 1. Marechal, G.Le, Anslot, P., Mravak, Z., Liferov, P. and Guennec, S. Le (2011). Design of a floating platform hull for arctic conditions in the Barents Sea, Arctic Technology Conference, Houston, TX, February 2011.
- 2. Sablok, A., Ramachandran, M., and Kim, J.W. (2011). Disconnectable arctic spar, Arctic Technology Conference, Houston, TX, February 2011.
- 3. Dalane, O., Aksnes, V., Løset, S. and Aarsnes, J.V. (2009). A moored arctic floater in first-year sea ice ridges, 28th International Conference on Ocean, Offshore and Arctic Engi-neering, Holululu, HI, 2009.