ITER spin-out Application: Interactive maintenance simulation

Dr.ir. C.J.M. (Cock) Heemskerk Heemskerk Innovative Technology B.V.

HIT Activities & Partners

Support to innovative high-tech projects in critical development phases

Our activities include:

- Concept Studies
- System Studies
- System Engineering
- Project Management
- Engineering Audits
- Peer Reviews

Introduction

Big Science & Industry – The need for maintenance

- Big Science: Experimental operations, extreme operating conditions
- Industry: New machine, new plant, extreme investments, MTTR

Developing maintenance procedures

- While the machine or plant is still on the drawing board
- Validate complex procedures, simplify design
- Multi-operator, multi-device cooperation
- Avoid expensive 1:1 scale hardware mock-ups
- Provide early feedback on practical maintainability

Training and operational support

- Basic skills, procedure training
- Non-nominal procedures, safety training
- Haptic guidance, Synthetic Viewing

ITER

- Experimental reactor
- Mission: Prove that fusion is a viable power source
- "The sun on earth"
- Under construction in Cadarache, France
 - First plasma Nov. 2020
- Plasma confined by
 superconducting magnets

ITER needs Remote Maintenance

Components fail due to extreme experimental loads

- Thermal loads:
 - Plasma Steady-state, ELMs, Disruptions

Neutrons Volumetric heating Instrument Ohmic losses in ECRH

- Particle fluxes: Re-deposition of eroded material on optics, mirrors
- Electro-magnetic loads:
 - Sudden termination of plasma current (disruptions) 15 MegaAmps in 40 ms => significant displacements
- Neutrons: Degradation of materials, optics

No manual handling due to contamination

- Beryllium deposition
- Tritium
- Activation (gamma radiation)

Parts to be maintened

30/10/2014

ITER maintenance logistics

ITER Project Challenges

ITER is huge - 10 x larger than existing plant (JET)

- Estimated 15E6 components
- Unprecedented Scale of Remote Handling Maintenance
- Diversity of RH systems larger than @ JET

ITER is a pressurised nuclear facility

• Regulations require proof (verification and validation) of maintenance procedures (at all levels) before operation

ITER is a new, international scientific cooperation

- Politics and procurement policies
- Contributions in kind
- Evolving standards

ITER Maintenance Analysis

- In line with International standards and methodology
- Starting point: Maintenance Strategy Input from RAMI (!)
 - When: Planned or not planned
 - What: Which components
 - Where: Hot Cell, Port Cell
 - How: Manual or with Remote Handling
- > Perform analysis with CAD, VR check feasibility, resource usage:
 - Effort (time) and HCF occupation
 - Spare parts to be kept in stock
 - Tooling
 - Intermediate Storage & Logistics, Waste
- > Input to formal Remote Handling compatibility review
- > Iterate to increasing detail corresponding to design review goals
- > Validate using interactive haptic Virtual Mock-up

Maintenance Analysis process

Typical Outputs

Results

- Plant Definition Form
- Task Definition Form
- Operational Sequence
- Time estimates, MTTR
- HCF occupation
- Space requirements
- Spare part policy
- Validated procedures
- Proposals for tooling
- Instruction movies

Example VR Animation

Unbolting a steering mirror in the ECH Upper Launcher

Calibration: Can you trust VR?

Validation of VR with HW Benchmark in RH Testbed

- Time estimates of common RH tasks
- Validation of tools and procedures

"Verifying Elementary ITER Maintenance Actions with the MS2 Benchmark Product," C.J.M. Heemskerk, B.S.Q. Elzendoorn, A.J. Magielsen, G.Y.R. Schropp, SOFT-2010

Calibration

Virtual Reality vs Hardware Testbed

30/10/2014

Provide design feedback

Validate maintenance feasibility with interactive Simulation

Support operations

Calibrated Model provides interactive guidance during operations

• Increase safety, reduce MTTR

Interactive training

Train operators while facility in design phase

Applications in Industry

Analyse maintainability (in design phase)

- Reduce the time to get new facility operational
- First time right
- Reduce Mean Time To Repair
- Reduce life cycle cost

Interactive maintenance training

- Serious game raises safety awareness
- Train operators while facility in development
- Train operators while machine is in production
- Make new facility available sooner
- Increase operational availability

Conclusions

Maintenance is integral part of facility operations

• Not just for big science facilities that operate under extreme conditions

It pays off to analyse maintenance procedures early

- Interactive VR models provide early feedback on practical maintainability
- Avoid expensive 1:1 scale hardware mock-ups
- Validate complex procedures
- Increase facility availability
- Reduce life cycle cost

Use interactive VR models for training and support

- Basic skills, procedure training
- Non-nominal procedures and safety training
- Synthetic Viewing, haptic guidance

Contact and links

Operator training with Jenga:

http://www.youtube.com/watch?v=jWYMbVVFIEI

GUPP analysis:

http://www.youtube.com/watch?v=8NJmnnKAjWQ

VR validation:

https://www.youtube.com/watch?v=GZNc_cSQ4no https://www.youtube.com/watch?v=xK3Tx3pOYWQ

Remote Handling Study Centre

http://www.differ.nl/en/remote-handling-study-centre

Contact: Dr.ir. C.J.M. (Cock) Heemskerk M: +31 (0) 651 340 966 E: c.heemskerk@heemskerk-innovative.nl W: http://www.heemskerk-innovative.nl