First Learning's of Fukushima

Mario van der Borst

KIVI Kerntechniek Den Haag, May 13th, 2011

RWE Technology 5/18/2011 PAGE 1

WARNING Since not all information is analyzed these lessons learned can only be PRELIMINARY

Improvement – A Continuous Process

- Learning is essence of quality circles
- Essential to maintain and improve safety
- Many of these circles are in place at Nuclear Power Plants

Learning and improvement is a MUST

Better to learn from minor incidents and near misses, ...

Serious Accidents

- > Give some extra information
- > Give burst to improvement
- > Opens Eyes, removes barriers

European Stress Tests

What to learn from Fukushima?

- > New phenomena/insights
- > Old lessons <u>not</u> Implemented

Attitude: Learning / Questioning

Not to say: Can <u>not</u> happen at our plants, but is this happening at our plants in another way?

The First Lessons

Earthquake

- > Design Upgraded after Yoshi EQ 2007
- > Really beyond design basis?
- > Does this matter?

Observation Point (The lowest basement of reactor buildings)		Observed data (*interim)			Maximum Response Acceleration against Basic Earthquake Ground Motion (Gal)		
		Maximum Response Acceleration (gal)					
		Horizontal (N-S)	Horizontal (E-W)	Vertical	Horizontal (N-S)	Horizontal (E-W)	Vertical
Fukushima Daiichi	Unit 1	460* ²	447* ²	258 ²	487	489	412
	Unit 2	348* ²	550*2	302* ²	441	438	420
	Unit 3	322* ²	507*2	231* ²	449	441	429
	Unit 4	281* ²	319*²	200* ²	447	445	422
	Unit 5	311* ²	548* ²	256* ²	452	452	427
	Unit 6	298* ²	444 ^{*2}	244	445	448	415

Design Margins External Hazards

- > Historical approach
- > Maximum approach

- > Probabilistic
- > Cliff Edge

Tsunami

- > Tsunami Design Basis 5.7m, reality was >12m
- > Historical/geologicalTsunami's e.g. 869 (Jogan Tsunami)
- > Defense in depth?
- > Diesel fuel tanks? Areal separation?

Station Blackout

- > Importance of batteries
- > Importance of diversity; independent of AC power
- Steam pumps, emergency condenser, secondary F&B: to be independent of DC
- > Passive systems: idem

Loss of ultimate heat sink

- Diversity: cooling independent of ultimate heat sink. (water supplies, ground water, aircooling)
- > Decouple loss of main and loss of emergency cooling
- > Measures to prevent loss of cooling channel

- > Hydrogen not new
- > Hydrogen leakage to secondary containment under-estimated?
- > Nitrogen inertisation prevents hydrogen recombination

Secondary containment Fuel Pool

- > Integrity secondary containment
- > Pressure release capabilities
- > Accessible alternate cooling possibilities
- > Status monitoring
- > Pool leak suppletion
- > Fuel capacity, criticality

Severe accident measures

- > Filtered Venting
- > Ex-vessel cooling
- > Possibility to depressurize (no DC)
- > Alternate injection possibilities
- > Minimum monitoring capabilities, without normal DC

Off-site supplies/repairs

- > Resources for multiple unit site
- > Local and remote storage
- > Bunkered local supplies
- > Helicopter transport
- > Skilled people/Drills
- > Accessibility

Comparison with modern BWR

The energy to lead

Fukushima 1 German BWR 2 Low pressure cooling trains 3 LP cooling trains, designed Not designed against flooding against flooding, bunkered and 1 extra separeted. Redundanzdiesel Verfügbarkeitsdiesel cooling train Reactor Building (Secondary Containment) ZUNA-Diesel Reaktorgebäude (RG) Inerted Drywell (Primary Containment Gebunkerter Gebunkerter Notsteue stand Notsteuerstan ZUNA Gebäude Reactor SHB Core Zusätzliches Notkühisystem tkühlsyste atkihlevet Notkühlsystem 2 3 1 Δ Spelsewasserbehälte -ee P ł 00000 Torus

Nuclear Safety Principles

Still Apply after Fukushima

> Margin

> Defense in Depth

> Dependency

Learning from TMI and Chernobyl

- SB-LOCA's and non-LOCA's can be more limiting than the DBA.
- Symptom based accident procedures, operator training and simulators developed.
- Design improvements to improve non-LOCA response
- Examples: extra diesels, batteries, F&B, diverse systems, diverse ultimate heath sink, etc
- > Deterministic and probabilistic approach
- Better understanding of physics, thermohydraulics etc.

Organizational

- > Importance of human factor
- > Safety culture
- > International cooperation and exchange
- > Benchmarking and Peer Reviews
- > Periodic Safety Assessment

FUKUSHIMA ?

Summary

- International cooperation was unable to prevent this accident in a high-tech nation
- > More focus on Design and Operation
- > Revisit design basis
 - against external events and combinations
 - Beyond design margins, incl. Station Blackout capabilities
 - Preparedness severe accident situation, including effectiveness of hydrogen explosion prevention
 - Design of fuel pools and fuel pool building

Thank you for your attention

RWE Technology 5/18/2011 PAGE 20

Energiewirtschaftliche Folgen von Erdbeben und Moratorium: Strompreise steigen – der Markt reagiert

Deutschland wird vom Stromexporteur zum Stromimporteur

Bilanzierung Cross-Border Commercial Schedules für den Zeitraum 11.3. – 31.3.2011

