Linear Motion and Assembly Technologies

Pneumatics

Service

R

"Rustiger vaarwater"

Wait or create?

Even voorstellen....

- Naam: Maarten Kuijpers (34)
- Bedrijf: Bosch Rexroth
- Divisie: Systems & Engineering
- Functie: Technical Project Manager.....

Hydraulics

Wave generation

Renewable Energy

Renewable Energy

Renewable Energy

Hydraulics

Jacking

Hydraulic Jacking System

- 2500 tons per leg
- 60 m/h

Gusto / Rexroth Hydraulic Jacking system

- Jacking Capacity 2500 Tonnes per Leg - Holding Capacity 5000 Tonnes per Leg - Cylinder Speed under load 60 m/h

Hydraulics

Riser Tensioning

Heave compensation

Heave Compensation - General

Hydraulics

Hydraulics

Hydraulics

Hydraulics

Hydraulics

Hydraulics

Hydraulics

Hydraulics

Hydraulics

We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.

Passive Heave Compensation & Active Heave Compensation

Active part I

Rexroth

Bosch Group

Passive Heave Compensation & Active Heave Compensation

Active part II

Rexroth

Bosch Group

We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.

We also retain sole power of disposal, including all rights relating to copying, transmission and dissemination.

New developments

- Active tension control for Heave Compensators
- Draghead Heave Compensation for Dredge

Hydraulics

Why Active Tension Control?

- Pressure variation, inertia and Friction give load variation in Passive Heave Compensation
- More accuracy in tension control required

Hydraulics

Measurements on Saipem 3000

Hydraulics

Measurements on Saipem 3000

PHC motion (200T load on seabed)

Hydraulics

Why Active Tension Control?

- Pressure variation, Inertia and Friction give load variation in Passive Heave Compensation
- More accuracy in tension control required
- Transition between AHC to PHC requires bypassing of AHC cylinder part transition between AHC and ATC only requires control parameters to change.

So:

Active force control instead of passive compensation.

Hydraulics

Why Active Tension Control?

- Pressure variation and Friction give load variation in Passive Heave Compensation
- More accuracy in tension control required
- Transition between AHC to PHC requires bypassing of AHC cylinder part
- Transition between AHC and ATC only requires control parameters to change.

Challenges

Force control is sensitive to disturbances

Hydraulics

Why Active Tension Control?

- Pressure variation and Friction give load variation in Passive Heave Compensation
- More accuracy in tension control required
- Transition between AHC to PHC requires abrupt bypassing of AHC cylinder part
- Transition between AHC and ATC only requires control parameters to change.

Challenges

- Force control is sensitive to disturbances
- Use MRU data Force Control

Hydraulics

Measurements on Saipem 3000

Direct Force control

- Uses a load cell at the fairleader
- Tests onboard Saipem 3000, show control loop can be sensitive to disturbances and is not very robust.

Measurements on Saipem 3000

AHC motion

Hydraulics

Hydraulics

Hydraulics

Cascade control

- Much less sensitive, more robust
- Also uses MRU data

Hyaraulics

Hydraulics

Hydraulics

Heave compensators in Dredge Technology

Draghead control

Hydraulics

Active heave compensation force and position Benefits of active heave compensation with position control

Rexroth

Bosch Group

Hydraulics

Active heave compensation force and position Benefits of active heave compensation with position control

Deepening of seabed to certain level (only removal of necessary soil)

Hydraulics

Active heave compensation force and position Benefits of active heave compensation with position control

Dredging layers with accuracy of 5% (poluted layers, or layers with high % rich minerals)

Hydraulics

Linear Motion and Assembly Technologies

Service

"Questions?