

SeaBreeze©

Putting Offshore Wind on a Firmer Foundation

SeaBreeze Technology – Reducing Project Cost and Risk

Presented by David Bone BSc. C Eng. C Mar Eng. FIMarEST.

All information contained in this presentation is strictly confidential and may not be copied or reproduced without the prior written permission of Xanthus Energy Ltd.

About Xanthus Energy Ltd

Our Vision:

To Enable the development of large scale "Farshore" Wind Energy Resources

Our Focus:

To develop Cost Effective and Environmentallyacceptable "Farshore" wind turbine foundation systems using:

Innovative, Proven Technology Purpose Design and Optimisation Efficient Manufacturing Self-installing Technology

Our Background

Offshore & Specialist Engineering Skills ...

Project Identification Conceptual Engineering Buoy Systems Design Floating Structures Autonomous Operations Marginal Production Platforms Submarine Cable Engineering Foundation Design Electrical Power Systems Wind Turbine Fatigue & Dynamics Materials Technology Hydrodynamics Stress Analysis & FEA Project Coordination

Why Go into Deeper Water? "The Far-shore"

- Inshore waves are peakier, more frequent & damaging
- Poor and Unsafe Access in shallow water
- Limited Number of "Sandbank" Sites (Inflexibility)
- Wind Farm Scale Limitations inshore
- Misconception of Costs and Problems involved in deeper water installations
- Reduce conflict with Other Users and Interest Groups (SEA)
- Increasingly Poor Public Perception inshore

Sea Breeze[©]

- Our patented offshore wind turbine foundation systems ...2 versions:
 - SeaBreeze: Fixed shallow water up to 60 metres
 - SeaBreeze: Floating deeper water, 60 to 200 metres and beyond
 - Optimised for offshore wind turbine lifecycle cost, weight, durability and any size of WTG
 - Based on proven, operating technology

Sea Breeze[©] - Design Drivers

- Low Installed Cost
- Design Functionality
- Durability
- Low Cost Maintenance and Operation
- Minimal Visual Intrusion
- Economic Removal
- Location Flexibility (i.e. seabed conditions and water depth)

Sea Breeze: Fixed[©] - Enabling Methodology

- Fit-for-Purpose Design
- Material Selection for Optimum Performance
- Prefabrication using Repeat Formwork
- Inshore Installation of Turbine and Blades
- Inshore Commissioning and Testing
- Typically no Seabed Preparation
- Buoyant structure No Specialised Vessels needed for Installation

Sea Breeze: Fixed[©]

- Self Installing
- Seabed Founded
- Gravity Base
- Prefabricated
- Telescopic Tower option

14/48

Sea Breeze: Fixed[©]

- Development Status

- IP and Patenting Complete
- Preliminary Design Complete
- Hydrodynamic Analysis Complete
- Model Testing Complete
- Cost Analysis and Verification Complete
- Independent Technical Verification Complete
- Detailed Design to suit turbine configuration

Sea Breeze[©] Floating

- Self Installed
- Floating Structure
- Gravity Anchored
- Prefabricated
- Telescopic Tower option

18/48

Typical Configuration

Approx. DimensionsNascelle Ht.- 72.75mRotor Ø- 90 -100mWater Depth- 50 m plusWave Height- 20m

Sea Breeze[©] - Outline Specification

Floating Structure Steel Weight 702 tonnes Overall Diameter 40.5 metres Tower Height (above MSL) 72.75 metres Operating Draft 20 metres Buoyant Chamber Ø8 metres

Gravity Base Structure

Overall Dimensions 44m x 44m x 3.5m Weight 2000 tonnes approx.

Tether System

Each Outrigger - Multiple Galvanised Wire Ropes UBS 1200 tonnes per tether assembly

Sea Breeze[©] Floating

- Performance Criteria

- Economic in water depths of around 50-200 metres and beyond.
- 70 metres turbine operating level (typical)
- Minimises seabed selection foundation problems
- Located some distance offshore to eliminate visual intrusion and planning concerns
- No dependence on often fragile or sensitive offshore features (e.g. Sandbanks)
- Wave Forces and Scour will be less on the base structure
- Generally no Seabed Preparation,
- Low Capex and Opex, Easy removal and re-use
- Cost effective in very deep water

Model Test at Cork University

Sea Breeze[©]

Manufacturing Overview

Copyright © 2009 Xanthus Energy Ltd

30/48

- > How much more simple it can be...
- Install and commission on land reducing cost
- > 12 hrs deploy using standard tugs no weather risk
- > Dramatically reducing cost, timescales and risk

Manufacture & Installation

- Concrete bases fabricated by glued segmental construction or slip formed – we have experience of both
- Foundations built in production line setup for mass production onshore close to wind farm site
- Needs only 6-7 metres for launch
- Fit-out of Tower, Nascelles and Blades In-shore
- Commissioning and Testing In-shore
- Completed Units can be stored In-shore as Floating Units
- No Specialised Vessels for Installation

Manufacture & Installation

Slip-way Launch and Prefabrication techniques already used for Missile Development Platforms for Irish Sea Deployment

Platform payload - 200 tonnes Water Depth - 20 metres Temporary Drydock established Rail Launch into Irish Sea Beach Reinstated.

SeaBreeze[©]

Offshore Wind Farm Risk and Cost Reductions

Sea Breeze[©] Risk Reduction

- Dockside assembly and Commissioning
 - 24 hour availability to work site easy access
 - Land based lift and tools : low cost, high availability, controlled environment
 - Commission and test onshore : reduced cost of failures, fixability
- Installation
 - No risk of heavy lift vessel cost overruns due to bad weather
 - reduction of high risk assembly activities offshore
 - smaller offshore team ... lower cost (typically Oil & Gas offshore labour costs 4 x onshore costs)
 - quicker installation

More Rapid Project Cash Generation!

Sea Breeze[©] Cost Reductions

Installation

- Generally no seabed preparation and no piling
- One trip installation
- No special vessels for installation : 3 standard tugs, uses buoyant structure to support weight
- Typical vessel costs reduced from £250,000 to £30,000 per day
- Rapid deployment : <12 hours complete install</p>
- Use of shorter weather windows : higher installation efficiency and lower slack time costs
- Total installation cost (2007 DTI report) reduced from £500,000 to £50,000

Sea Breeze[©] Cost Reductions

- Operation and Maintenance (O&M)
 - Jacking tower (if installed) allows lowering for removal/maintenance of nacelle/blades (hence reduced costs)
 - Complete removal is a simple reverse of installation (small decommissioning cost)
 - Easy removal permits major repair/upgrade onshore
 - All other costs comparable

Sea Breeze[©]

Technical Overview

Levelling & Seabed Preparation

- Patented foundation techniques for varying seabed conditions and levelling
- Vertical alignment adjustment is also possible at tower joint
- Use of a skirt for certain seabed conditions when required
- Low cost scour protection system can be fitted if needed (typically not required)

In General - No Sea Bed Preparation

Power Electrical Details

- Flared or flanged J or I tube built into base of buoy or concrete base
- Split flange above LAT to make watertight seal
- Expertise in cooling electrical equipment in enclosed spaces in marine environments
- Opportunity to place electrical power equipment in base of structure
 - reducing nacelle weight
 - providing easier access

Telescopic Tower Details

- Optional where installation or service requirements dictate
- Locking joints based on proven methods of assembly – low stress/fatigue
- Joints designed for positive locking
- Proven Jacking process used on other products
- Practical expertise in these systems

Supporting Wind Power Offshore

Ocean House 27a Welsh Street Chepstow NP16 5LN United Kingdom

Tel : +44 (0)844 3511162 e-mail davidbone@xanthusenergy.com