## Halliburton Engineering for Success in Developing Shale Assets

HALLIBURTON

Nov 30, 2010

# Shale is a Very Broad Name Used to Describe a Large Category of Rock

- In conventional petroleum geology shale is thought of as either a source rock or a seal to create an effective trap.
  - Conventional reservoirs require 5 key elements
    - Trap
    - Source
    - Seal
    - Reservoir
    - Maturity

## In productive Shale, the rock acts as its own source, reservoir, trap and seal.

#### **Perspective on Shale Reservoirs**

## **Conventional Gas // Unconventional Gas**



# There is, however, no doubt as to the impact that shale gas has had on the US market.

- Shale gas has had a phenomenal impact on the domestic market in the US and Canada creating a reasonable cost, domestic supply of energy
- Recent developments in the Bakken and Eagle Ford shale reservoirs are also producing significant volumes of oil



Plot provided by <u>www.GasMarketInsight.com</u> Schubarth Inc and Bazan Consulting, Incb

## **PROSPECT SCREENING**

Identifying good productive shale opportunities

### What is Required to Make Shale Productive?

- For Shale screening, four key requirements to look for are:
  - Total Organic Content (TOC)
    - There must be sufficient TOC to generate the hydrocarbon
    - There is a minimum TOC requirement to create inter-connectivity
  - Maturity
    - The age and burial history must be sufficient to generate hydrocarbon and generate connectivity
  - Complexity
    - Thickness and extent of the deposit
    - Fracturing and faulting
    - Bedding layer complexity
  - Stimulation Potential
    - Suitable mineralogy and mechanical properties
    - Natural fracturing
    - Geomechanical condition and pore pressure
    - Containment barriers and hazards (eg water producing zones)



### **Total Organic Carbon (TOC)**

- TOC represents the potential to generate hydrocarbons
- The quantity of organic carbon is important
  - Minimum of 2%
  - Maximum ~ 10%
- The thermal maturity of the organic carbon is important

#### **Information Sources**

- Core Analysis is the primary tool, but estimates can also be made from logs.
- Geochemical Analysis
  - Hydrocarbons present
  - Hydrocarbon potential
- Vitrinite Reflectance
  - Thermal maturity of TOC

#### Maturity

- Basin Modeling is used to determine the burial history of a formation to determine if conditions were favorable for hydrocarbon generation
  - Burial depth
  - Temperature exposure
  - Overburden
- Core and cuttings analysis
  - Porosity and permeability
  - Vitrinite Reflectance to help identify the level of maturity
    - Immature >> oil window >> wet gas / condensate >> dry gas
      > no gas

## Complexity

- The degree of complexity can have a significant impact potentially complicating the ability to keep a horizontal wellbore in zone and make stimulation difficult. Some features that are cause for concern include:
  - High fault frequency
  - Bedding layer complexity
  - High dip angle



#### **Stimulation Potential**

- For economic production from a nanodarcy reservoir, effective stimulation is an absolute requirement
  - Mineralogy
    - For hydraulic fracturing, sustaining long term fracture conductivity is essential
    - Higher strength, more brittle rock
      - High quartz or calcite content with lower clay contents
  - Production fluid (oil or gas)
  - State of stress in the reservoir (fracture growth behavior)
    - Isotropic
    - Anisotropic
  - Degree of natural fracturing
  - Manageable hazards
    - Fracture containment

## **Mechanical Properties**

#### Harder, More Brittle Material = Improved Conductivity Harder, More Brittle Material = More Natural Fractures







## IDENTIFYING THE BEST RESERVOIR TARGETS

How do we find the sweet spots within the reservoir

## **Identifying the Best Reservoir Targets**

- After working through the screening process and identifying a good opportunity, how do you determine the best well location in the reservoir?
  - Reservoir is extremely heterogeneous
  - Reservoir quality is bad

## Look for locations that have the best stimulation potential



# Identifying Reservoir with Good Stimulation Potential

#### Key indicators to identify good stimulation potential

- Mechanical properties
- Local stress conditions (Geomechanical model)
- Presence of natural fractures
- Fracture containment

#### **Information sources**

- Pre-Stack Seismic interpretation – low resolution on mechanical properties
- Wide Azimuth Seismic interpretation – stress anisotropy and natural fractures
- Well log data
- Core data

#### **Primary Objectives**

#### **Target Locations**

- Identify areas within the reservoir where the stimulation potential is best
  - Mechanical properties
  - Barriers
  - Low fault density
  - Stress conditions

#### **Target Layers**

- Identify key layers within the identified region where the stimulation potential is best
  - Mechanical properties
  - Stress conditions



## DRILLING AND FORMATION EVALUATION

#### **Two Key Areas of Focus**

#### **Identify Target Layers**

- Sufficient information must be obtained to identify the target layers in the reservoir
- Pilot hole logs, mud logging and ChemoStrat tools should be used
- Geological modeling should be incorporated

#### Keep the Well in Target

- Geosteering within the geological model is recommended
- The Geological model can be continuously updated
- Logging should target layers with the best stimulation potential
  - Sonic logs may provide the best information

## Planning and Drilling in the Geologic Model





#### BP CGU 13-17H

#### Well path is stuck in a narrow region with high clay content



HALLIBURTON

#### **SPE 132990**

How can economic production be achieved from nano-Darcy shale reservoirs?

## GETTING ECONOMIC PRODUCTION FROM SHALE

## Economic Production from Shale Reservoirs

- The Barnett shale has proven to be a massive natural gas reservoir after several years of incremental improvements in technology and methods.
- Microseismic fracture mapping has played a very significant role improving our understanding of fracture growth in the Barnett Shale.
  - Complex fracture networks were being created generating huge surface areas when compared to conventional bi-wing fracture treatment designs



#### **Microseismic Fracture Mapping**



## Economic Production from Shale Reservoirs

#### **Complex Fracture Networks**

- Create maximum reservoir contact and providing a conductive path back to the wellbore. The stimulated region around the well has been termed the Stimulated Reservoir Volume or SRV.
- Inefficient or high leak off fluids such as ungelled water have proven to be very effective in maximizing fracture complexity in the Barnett Shale
- The brittle nature and stress state within the Barnett shale helps to maintain open fractures, even with minimum proppant to support the fracture
- Horizontal wells with multiple frac stages create even more reservoir contact.

## Transition from Vertical to Horizontal Well Completions

#### Vertical Well: Complex Fracture

#### Horizontal Well, Multistage Complex Fracture





#### **Advances in Completion Technology**

- Microseismic fracture mapping
- Fracture designs to increase fracture complexity and maximize reservoir contact (High rate water frac)
- Transition from vertical wells to horizontal wells with multiple fracture stages
- Perf and Plug techniques for multiple stage horizontal wells (single interval, multi-interval)
- Ball operated frac sleeves and open hole packer systems
- Coiled tubing assisted fracturing
  - Jet perforating
  - Unlimited fracture stages

## Horizontal Well Frac Sleeve Completion with Cement



HALLIBURTON

## Horizontal Well Frac Sleeve Completion with Swellpacker<sup>®</sup> Systems



HALLIBURTON

## Horizontal Well Frac Sleeve Completion with Open Hole Packers



HALLIBURTON



#### CobraMax and SurgiFrac

## **COILED TUBING FRACTURING**



## **CobraMax – Coiled Tubing Fracturing**

#### Perforation Strategy

- Hydraulic Jetting
- Selective/focused

## Hydraulic fracturing

- Connection to the reservoir
- Multi-staging for long interval coverage
  - CobraMax H designed for long interval horizontal wells



## SurgiFrac

- SurgiFrac, hydrajet assisted hydraulic fracturing.
- Can be performed in cased hole or open hole environments.
- The fracture is surgically placed using the focused energy of a hydraulic jet for initiation



# The Pros and Cons of Different Fracturing Techniques

#### Perf and Plug

- Proven technique preferred by many operators
- Time required between frac stages to set the bridge plug and perforate is significant
- Screen outs result in significant delays to clean out the wellbore (Frac designs become over conservative)
- Over displacement is required to get guns and plugs placed.

#### **Sliding Sleeve Systems**

- Time between stages is reduced helping improve efficiency
- Screen outs will result in significant delays to clean out wellbore. Tools can also be accidentally shifted during clean out operations.
- Limited number of stages due to ball sizes. (being addressed by opening multiple valves per ball)
- Over displacement is required to place balls or plugs and activate valves.

## The Pros and Cons of Different Fracturing Techniques

#### CobraMax

- Unlimited number of stages in 1 trip
- Fractures can be closely spaced
- More tolerant of screen outs, coil can be used to clean out without losing much time
- Reduced flow area limits injection rate
- More complex operations create some concern
- No over displacement

#### SurgiFrac

- Can be used for cased hole or open hole, making it a remediation option
- More tolerant of screen outs, coil can be used to clean out without losing much time
- Jet erosion will limit the total number of stages per trip
- Injection rates and proppant volumes are limited by jet size and durability
- More complex operations create some concern
- No over displacement

#### A Problem!

- Not all shale reservoirs behave like the Barnett Shale. In fact nearly all of them are different!
- The Barnett Shale is a brittle shale with high quartz concentrations that sits in a relaxed stress state. There is very little stress anisotropy meaning it is relatively easy to create complex fracture networks.
- Many other shale reservoirs are softer with more clay or carbonate.
- Many other shale reservoirs also have significant amounts of stress anisotropy meaning the fractures will tend to be more planar and less complex.



### **Reservoir Based Stimulation Design**



#### Shale Development – An Integrated Approach

- Proactively address reservoir and full field development challenges in shale reservoirs
  - An integrated process from exploration through to production is needed to maximize the asset potential



### **Technology Challenges**

- Horizontal drilling and hydraulic fracturing have been critical in achieving economic production from shale.
  - Huge volumes of fresh water are used in hydraulic fracturing operations.
  - Chemical usage in hydraulic fracturing has created concerns of ground water contamination.
- Some reservoirs are very close to urban centers creating logistical challenges
- Horizontal wells require several fracturing treatments for each wellbore. The demand for fracturing services has grown exponentially.
  - Equipment and personnel are in short supply
  - The industry is growing rapidly to try to keep pace
  - New equipment concepts are being explored to meet the demand.



## **New Technology to Address Shale Needs**

- Collaborative well planning
  - Minimize environmental impact
  - Pad drilling
- Water treatment
  - Re-cycling produced fluids (CleanWave<sup>SM</sup>)
    - Electrocoagulation
  - Reduced biocide usage (CleanStream)
    - High power UV
- Treating fluids
  - Tolerant with produced fluids
  - Environmentally friendly (CleanStim)
- New generation pumping equipment
  - PowerReach hybrid coiled tubing for long horizontal wells
  - Modular frac equipment











# Williams, Dr. Bob Smith Pad, Denton County, Texas, USA



HALLIBURTON

## What do you think?

#### HALLIBURTON