Prelude Turret Topsides
The Hague, 25-Jan-2016

Prelude Turret Mooring System (TMS)

Philippe LAVAGNA, Development Studies Manager
Vincent MAZARGUIL, Prelude TMS EPM
SBM Monaco

© SBM Offshore 2016. All rights reserved. www.sbmoffshore.com

Disclaimer

Some of the statements contained in this presentation that are not historical facts are statements of future expectations and other forward-looking statements based on management’s current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance, or events to differ materially from those in such statements. Such forward-looking statements are subject to various risks and uncertainties, which may cause actual results and performance of the Company’s business to differ materially and adversely from the forward-looking statements.

Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in this presentation as anticipated, believed, or expected. SBM Offshore NV does not intend, and does not assume any obligation, to update any industry information or forward-looking statements set forth in this presentation to reflect subsequent events or circumstances.
Turret Mooring System Overview
Prelude FLNG Project (*Shell video*)
Prelude TMS specifics & pictures
Focus on Prelude Turret Manifold & Fluid Transfer
Turret Mooring System - Main Components

- Geostationary turret connected to mooring lines and supporting risers
- Weathervaning facility
- Bearing system - structural interface
- Swivel stack – fluid and power interface

Weathervaning Systems
Mooring Type - World Overview

Tropical Storms:
Hurricanes, Cyclones, Typhoons
SBM Turret Design Philosophy: Safety & Reliability

Safety:
- Passive mooring system (designed to work in ‘black ship’ scenario)
- ‘Fail Safe’ approach
- Minimize Risks
 - Minimize Risk of gas leak (reduce number of flanges before ESDV)
 - Minimize Consequence of potential gas leak (riser connection at main deck)
 - Minimize Entrapped inventory
- Passive Fire Protection system

Reliability
- Ability to inspect/change-out/repair components while in operation
 - Axial Bogies & Radial Wheels (for very demanding project conditions)
 - SBM swivel & stack design
- Stringent Design & Procurement Requirements based on wealth of experience
 - Shell DEP (Design Engineering Practices)
 - SBM GTS (Group Technical Standard)

Bogie bearing system design

Loads on bogie bearing:
- Vertical loads: (gravity, riser, vertical mooring component and overturning moment) distributed evenly over all axial bogies
- Horizontal loads: (accelerations, horizontal mooring component and vessel motions loads) resisted by radial wheels in contact
Swivel Overview

Swivels transfer fluids, utilities, power and signals between the geostationary turret and the weathervaning vessel.

Fluid Swivels for oil, water and gas (Pipe Swivels)

Fluid Swivels for oil, water and gas (Toroidal Swivels)

Utility Swivels for transfer of chemicals, hydraulics, air/gas, firewater and vents

Electrical and Optical Swivels for the transfer of power and signals / information
Since 1977, SBM has delivered 70+ Swivel stacks, representing:

- 300+ Production swivels from 4 to 532 bar
- 40+ Utility swivels from 5 to 517 bar
- 63+ Electric swivels from 3.5 kW to 30 MW

→1/3 of swivel stacks in production worldwide

Swivel video

Swivel Stack Driving system

- Each swivel is fitted with a passive mechanical device that connects the rotating part to the rotating Vessel.
- The only degree of freedom that is restrained is the rotation about the vertical axis. The swivel stack remains free to translate in all 3 directions.
- Designed to withstand the friction loads generated by the different seals sliding on their respective seal running surfaces as well as the environmental loads.
- Easy access for maintenance.
Very High Pressure Swivels

ASME Woelfel Award of Merit 2014

Prelude FLNG Project
SHELL video

https://www.youtube.com/watch?v=0oIOLqu8TtU

Subsea Systems

Turret

Weathervaning

Prelude TMS Specifics
SHELL Prelude FLNG

- Turret moored floating LNG facility with liquefaction capacity of 5.3 mtpa
- LNG (3.6 mtpa), condensate (1.3 mtpa) and LPG (0.4 mtpa)
- Facilities for exporting by Side by Side mooring
- On station for 25 years – 475 km North-East of Broome in Western Australia
- 250m WD – Cyclonic area – 10,000 years event
SHELL Prelude FLNG

FLNG => permanently moored while exposed to cyclones
Designed for 10,000 yrs Cyclonic conditions

Prelude TMS – Overview – Fixed vs Rotating

Rotating part:
- Bogie Support Structure
- Swivel outer part
- Gantry
- (Vessel)

Fixed part:
- Mooring lines
- Chaintable
 & Lower Turret
- Collar deck
- Manifold
- Swivel inner part
Largest-ever-built:
- 4x4 arrangement
- 175mm R4 chains
 + 162mmØ wires
 (MBL= 25.2 MN)

(total = 17kms / 10,400 tons of chains)

Prelude Lower Turret Integration
Prelude BSS & Collar Deck Integration

Source: Google Earth 2013

Prelude Manifold & Gantry Integration
Prelude Turret Manifold & Fluid Transfer

Prelude Turret Manifold
Gas Flow & Safety Systems
Prelude TMS – Fluid Transfer System

From Subsea…

…to Topsides (via Turret Manifold)
Normal Operation

- Transfer from riser to manifolds
 - Individual lines provided with:
 - Riser ESDV
 - Inboard Process SDV
 - Main Choke valve
 - Bypass

- Manifolding through 2 productions headers
 - With Turret Motorized Operated diverter valves
 - Via production swivel to get from Fixed Turret to Rotating Topsides
 - To 2 separators onboard FLNG Topsides

Start-Up

> 1st step: Pressure equalization across ESDV
 - MEG injection in pipe section between riser ESDV and PSDV
 - Ensure safe riser ESDV (ball valve) opening
Start-Up

1st step: Pressure equalization across ESDV
- MEG injection in pipe section between riser ESDV and PSDV
- Ensure safe riser ESDV (ball valve) opening

2nd step: Lower riser pressure
- Main choke valve opened
- PSDV bypass line used to lower the riser pressure below pressure trip setting
- & hence ensure a safe step 3

3rd step: Pressure equalization across PSDV
- Main choke valve closed
- PSDV bypass line opened to equalize pressure across PSDV
- Ensure safe PSDV (ball valve) opening
Start-Up

1st step: Pressure equalization across ESDV
- MEG injection in pipe section between riser ESDV and PSDV
- Ensure safe riser ESDV (ball valve) opening

2nd step: Lower riser pressure
- Main choke valve opened
- PSDV bypass line used to lower the riser pressure below pressure trip setting
- & hence ensure a safe step 3

3rd step: Pressure equalization across PSDV
- Main choke valve closed
- PSDV bypass line opened to equalize pressure across PSDV
- Ensure safe PSDV (ball valve) opening …and start-up

Pressure Rating Break

2500 # / 600 #

- Production piping lines u/s (and including) MOVs
 - rated to 399 barg

- Production headers, swivels and d/s piping line to Topsides
 - rated to 89 barg
Overpressure protection

- High pressure Trip
 u/s main Choke valve
- 2003 High pressure trip
 d/s main Choke valve
- PSVs located on Topsides
 i.e. d/s swivels on lines to separators

Follow-up actions:
- Close PSDV
- Close Bypass PSDV
- Close Meg injection SDV
- Close riser ESDV

Shutdown

In case of Emergency Shutdown
ESD 2 (confirmed F&G detection)

- Subsea shutdown initiation
- Close Turret PSDV
- Close Turret riser ESDV
- Automatic blowdown of inventory
 from Turret SDV to Topsides
 (Blowdown valve located on Topsides)
Prelude TMS – Fluid Transfer System

- Prelude Swivel Stack
 - Height: 19.6 Meters
 - Diam. Max.: 3 Meters
 - Weight Approx.: 140 Tons

Prelude Turret Manifold
Other Safety Systems
Deluge water is used for the active fire protection:

- Dedicated water spray deluge system protecting swivel stack
- Deluge nozzles located under Gantry Deck to protect Manifold decks by cooling via cascading effect through the gratings

Passive Fire Protection

- protecting Production piping lines
 - from the riser head
 - to the inboard PSDV

Heat Shielding

- Flare tips located close to Turret & 136m above Collar deck level

- Flaring:
 - not part of normal operating conditions;
 - however, may occur in emergency conditions (& also process upset conditions like start-up).

- Heat shielding required to reduce impact from radiation:
 - on personnel, considering time to escape (>1.6 /6.3 kW/m²)
 - on equipment (>12 /22 kW/m²)

Personnel Safety

- Personnel protection provided for all piping normally operating above 70°C in areas where piping is exposed to personnel
Personnel Safety – Access & Escape

- Turret Collar deck @ same elevation than Forecastle deck & Vessel Process Deck Level A
 - easy Access/Escape routes from Turret area to reach primary or secondary muster point

- Between the Turret fixed and rotating parts:
 - anti-entrapment devices strategically positioned to prevent hand/limb/foot entrapment whilst the vessel weathervanes around the Turret
 - suitable marking with painted colored stripes and appropriate warning

TLER: Safety & Reliability Motivations

Turret Local Equipment Room (TLER):
- workable area... but normally un-manned (& not considered as temporary refuge)
- pressurized room housing the non-“Ex rated” E&I&T equipment

- provided with entrance air lock + with HVAC system able to:
 - maintain acceptable working inside conditions for equipment & personnel
 - prevent ingress of gas & smoke by maintaining >50Pa higher TLER pressure
 - isolate the TLER under shutdown conditions
Prelude Turret Manifold

Other Reliability Systems
Typical hydrate management strategy:
- MEG injection
 - not expected during the normal operation
 - intermittent use during start-up and shutdown
 (directly in Turret prod. piping lines or subsea via umbilical)

- Other chemicals (paraffin inhibitor - pour point depressant - scale inhibitor) against wax/scale formation
 injected subsea via umbilical

Pig launchers & receivers
- dry gas motive fluid for pigging
- 3D bends on piggable piping
- isolation DBB valves from main production line
- returned fluids back to gas production lines
- collected condensates directed to closed drains
TMS is already considering later stage/future fields tie-in to Prelude
Design basis = Plug and Play philosophy

Key features:
- minimize production shutdown during future Offshore integration,
- maximize symmetries and therefore increase the flexibility,
- minimize leak sources,
- limit offshore hot-work *like: already planned bolted solutions for supports*,
- space allocation, equipment pre-sized for future,…
Thank you
Philippe.LAVAGNA@sbmoffshore.com
Vincent.MAZARGUIL@sbmoffshore.com

Q&A