SWAB PRESSURE DUE TO CONE POP-OUT

Predicting swab pressure resulting from cone pop-out due to tubular expansion during mono-diameter well drilling

Jan-Willem van Dongen
Main objective

“What is the magnitude of swab pressure due to cone pop-out and how is it influenced?”

Results

- Two numerical programs are made that can predict swab pressures
- Sensitivity analysis for various parameters has been done
BACKGROUND & APPROACH

Mono diameter drilling
Cone pop-out
Approach
Application
MONO DIAMETER DRILLING

Conventional drilling

- More material needed
- Larger drilling rig
- Telescopic well design

Mono diameter drilling

- Less material needed
- Smaller drilling rig
- Slim well-design
Pipe expansion

Well filled with drilling mud

Smaller pipe inserted with cone

Cone pulled and expanding pipe

Result design well with minimal diameter reduction
CONE POP-OUT

Close up of pipe expansion

- Cone reaches overlap
- Additional expansion force
- Drill string stretches
- After expansion, energy released in form of acceleration cone
- Void below the cone
What happens after a cone pop-out?

- Cone pops out and wave starts running through drill string
- Cone pushes fluid above generating a (positive) pressure wave
- Fluid bottom hole is expanded creating negative pressure wave
- Negative pressure wave reflects at the bottom, doubling amplitude
- Negative pressure wave reaches cone and (partially) reflects
- Cycle continues…
- …until wave in drill string hits surface and cone stops
- Fluid in bottom hole is contracting, increasing pressure
Approach of investigation swab pressure

Divide system in two components

- **Structure**
 - Longitudinal motion of drill string + cone
 - Drill string is stretched due to expansion force
 - Longitudinal motion of slender rod with mass at tip due to initial displacement

- **Fluid**
 - Three regions
 1. Bottom hole
 2. Annulus
 3. Inner drill string
 - Transient fluid flow analysis

- **Interaction**
 - Fluid pressure
 - Frictional losses (minor & major)
EXPANSION FORCE VS SWAB PRESSURE (10.2 – 10.0)

Swab pressure (full reflection) @ GOM Well (10.2'' - 10.0'')

Pipe collapse pressure
CONCLUSION

Conclusion
Recommendations
CONCLUSION

Conclusion

- Swab pressure due to cone pop-out is a significant risk for pipe collapse and should be taken into account
- Clearance, expansion force, bottom hole reflection are most sensitive
- Models used on well in Gulf Of Mexico

Recommendations

- Experimental validation is needed
- Measure fluid pressure during pipe expansions in the field to use data
- Investigate in reflective properties bottom hole