Symposium "Pile design and displacements"

The Hague, The Netherlands, 27th May 2016

Combined Pile-Raft Foundations (CPRF) in theory and engineering practice • Current developments

Prof. Dr.-Ing. Rolf Katzenbach

- Director of the Institute and the Laboratory of Geotechnics · TU Darmstadt
- Past Chairman of the Technical Committee 212 "Deep Foundations" (TC 212) of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)
- Board Member of the German Tunnel Association (STUVA)
- Board Member of the German Geotechnical Society (DGGT)
- Publicly Certified Expert and Independent Checking Engineering (ICE)

Dipl.-Ing. Steffen Leppla

- Research Associate at the Institute and Laboratory of Geotechnics · TU Darmstadt
- Certified Independent Expert for Geotechnics of metro and tram systems

Soil-structure interaction

What's the problem?

- Settlements
- Differential settlements
- Tilting

TECHNISCHE UNIVERSITÄT

DARMSTADT

Subsoil in Frankfurt am Main, Germany

4

Prof. Dr.-Ing. Rolf Katzenbach • Director of the Institute and the Laboratory of Geotechnics

Marriott-Hotel - Frankfurt am Main, Germany

Construction time: 1973 - 1976 Height: 162 m Foundation: raft foundation 34 cm (!!) max. settlements:

Marriott-Hotel - Frankfurt am Main, Germany

Compensation of the settlements differences

Deutsche Bank · Frankfurt am Main, Germany

Foundation: raft foundation

Height: 155 m

Settlements:

min. 10 cm max. 22 cm 12 cm

Deutsche Bank · Frankfurt am Main, Germany

Settlement isolines

Deutsche Bank · Frankfurt am Main, Germany

Compensation system in the joint between high-rise building and the adjacent building

8

Old Dresdner Bank Hochhaus - Frankfurt

max. settlements: 20 cm

Soil-structure interaction

Combined Pile-Raft Foundation (CPRF)

Total resistance of the CPRF:

$$R_{tot,k}(s) = \sum_{j=1}^{m} R_{pile,k,j}(s) + R_{raft,k}(s)$$

Pile resistance:

$$R_{\text{pile},k,j}(s) = R_{b,k,j}(s) + R_{s,k,j}(s)$$

Raft resistance:

$$R_{raft,k}(s) = \iint \sigma(s, x, y) dx dy$$

Interactions:

- Pile-Soil-Interaction
 Pile-Pile-Interaction
- 3 Raft-Soil-Interaction
- 4 Pile-Raft-Interaction

Combined Pile-Raft Foundation (CPRF)

Three foundation types

Combined Pile-Raft Foundation (CPRF)

Single pile foundation

Combined Pile-Raft Foundation (CPRF)

14

Combined Pile-Raft Foundation (CPRF)

Basic studies on the pile-pile interaction

Numerical Studies

Basic studies on the Pile-Pile Interaction

Configuration of the model with 25 piles (e/D = 3)

Basic studies on the Pile-Pile Interaction

Configuration of the model with 9 piles (e/D = 6)

Basic studies on the Pile-Pile Interaction

Basic studies on the Pile-Pile Interaction

Basic studies on the Pile-Pile Interaction

Proof and safety concept for CPRF

Proof and safety concept for CPRF

SLS is more relevant!

ISSMGE -**Technical Committee TC 212 Deep Foundations**

International Society for Soil Mechanics and Geotechnical Engineering Société internationale de mécanique des sols et de la géotechnique

- 1 -

Prof. Dr.-Ing, Rolf Katzenbach, Germany Prof. Sang Seom Jeong, Korea Prof. Deepankar Choudhury, India

> Gary Axelsson, Sweden Willem Bierman, Netherlands Maurice Bottiau, Belgium Dan Brown, USA

Weidong Wang, China Limin Zhang, Hong Kong

A.A. Zhussupbekov, Kazakhstan

Details: www.issmge.org/tc212

Prof. Jean-Louis Briaud, USA

 $R_{tot,k}(s) = \sum_{i=1}^{m} R_{pile,k,j}(s) + R_{raft,k}(s)$

TECHNISCHE

UNIVERSITAT DARMSTADT

SIMSG F ISSMGE

360-41456348

Modelling soil-structure interaction

Bridge pier foundation types

Numerical model of foundation elements

Comparison of settlements

Comparison of costs

	Settlement	Costs of pile production (Assumption: 600 €per meter)
Spread Foundation	11.1 cm	-
CPRF (6 Piles)	3.6 cm	55,000 €
Pile Foundation (12 Piles)	1.2 cm	180,000 €

Messeturm - Frankfurt am Main, Germany

Combined Pile-Raft Foundation (CPRF)

Messeturm · Frankfurt am Main, Germany

Messeturm - Frankfurt am Main, Germany

Construction time: 1988 - 1990

Messeturm - Frankfurt am Main, Germany

Construction time: 1988 - 1990

Messeturm - Frankfurt am Main, Germany

UNIVERSITAT **Messeturm - Frankfurt am Main, Germany** DARMSTADT Effective building load: = 1.570 MNUltimate pile load: 64 x 11.3 MN 725 MN = Load transfer by raft: 845 MN Contact pressure: 250 kN/m² _{CPRF} = 0.46 © @ @ 0.0 m Pile load [MN] Skin friction [kN/m²] 50 100 150 200 10 20 20 10 $(\mathbf{0})$ 30 -----40 40 Depth [m] Depth [m] C Central pile ring (M) Middle pile ring O Outer plle ring

Prof. Dr.-Ing. Rolf Katzenbach • Director of the Institute and the Laboratory of Geotechnics

Messeturm - Frankfurt am Main, Germany

Comparison of costs for the piles

Accomplished: CPRF of 64 piles ($I_{average} = 30 \text{ m}$)

Costs of pile production:64 piles of 30 m at 600 €m001.2 Mio. €

Pile foundation: 316 piles (I = 30 m)

Costs of pile production: 316 piles of 30 m at 600 €m 0 5.7 Mio. €

Savings in costs of pile production

CO₂ reduction: 2,500 t

35

European Central Bank - Frankfurt am Main, Germany

European Central Bank - Frankfurt am Main, Germany

European Central Bank - Frankfurt am Main, Germany

European Central Bank - Frankfurt am Main, Germany

Comparison of costs for the piles

Accomplished: CPRF of 97 piles ($I_{average} = 30 \text{ m}$)

Costs of pile production: 97 piles of 30 m at 600 € m 0 1.7 Mio. €

Pile foundation: 490 piles (I = 30 m)

Costs of pile production: 490 piles of 30 m at 600 **€**m

Õ 8.8 Mio. €

Savings in costs of pile production

CO₂ reduction: 3,300 t

City Tower - Offenbach am Main, Germany

City Tower - Offenbach am Main, Germany

City Tower - Offenbach am Main, Germany

Opernturm · Frankfurt am Main, Germany

Comparison of costs for the piles			
Accomplished: CPRF of 57 piles (I _{average} = 40 m)			
Costs of pile production: 57 piles of 40 m at 600 €m	Õ 1.4 Mio. €		
Pile foundation: 246 piles (I = 30 m)			
Costs of pile production: 246 piles of 30 m at 600 €/m	Õ 4.4 Mio. €		
Savings in costs of pile production: CO ₂ reduction: 2,250 t	3.0 Mio. €		

Maintower - Frankfurt am Main, Germany

Maintower - Frankfurt am Main, Germany

Maintower - Frankfurt am Main, Germany

- Results of optimised design:
- minimised deformations
- minimised construction time

Maintower - Frankfurt am Main, Germany

Accomplished: CPRF of 112 piles (I_{average} = 30 m)

Costs of pile production:112 piles of 30 m at 600 €m0 2.0 Mio. €

Pile foundation: 277 piles (I = 30 m)

Costs of pile production: 277 piles of 30 m at 600 €m 0 5.0 Mio. €

Savings in costs of pile production:

CO₂ reduction: 2,200 t

3.0 Mio. €

Taunusturm - Frankfurt am Main, Germany

Taunusturm - Frankfurt am Main, Germany

Living tower:

- piles: 12
- Foundation raft: 1.2 m

High-rise buildings:

- ➢ piles: 46
- Foundation raft: 2.8 m

Underground parking:

- ➢ piles: 65
- foundation raft: 0.9 m

Taunusturm · Frankfurt am Main, Germany

Taunusturm · Frankfurt am Main, Germany

Taunusturm · Frankfurt am Main, Germany

TECHNISCHE UNIVERSITAT DARMSTADT

Comparison of costs for the piles

Accomplished: CPRF of 46 piles ($I_{average} = 25 \text{ m}$)

Costs of pile production:46 piles of 25 m at 600 €m0 0.7 Mio.

Pile foundation: 277 piles (I = 30 m)

Costs of pile production: 230 piles of 30 m at 600 €m 0 4.1 Mio. €

Savings in costs of pile production:

CO₂ reduction: 2,540 t

Õ 0.7 Mio. € I = 30 m)

3.4 Mio. €

Mirax Plaza Tower A - Kiev, Ukraine

Mirax Plaza Tower A - Kiev, Ukraine

2.5 Mio. €

Mirax Plaza Tower A · Kiev, Ukraine

Comparison of costs of the barretts

Accomplished: CPRF of 62 barretts (I = 33 m)

Costs of barrett production:62 barretts of 33 m at 920 €m0 1.9 Mio. €

Barrett foundation: 120 barretts (I = 40 m)

Costs of barrett production: 120 barretts of 40 m at 920 €m 0 4.4 Mio. €

Savings in costs of barrett production:

CO₂ reduction: 1,550 t

Combined Pile-Raft Foundation (CPRF) and horizontal loading

Combined Pile-Raft Foundation (CPRF) and horizontal loading

New Exhibition Hall 3 in Frankfurt am Main

- roof with a free span of 165 m
- horizontal loads on foundation (CPRF) resulting from arch trust of the roof

Combined Pile-Raft Foundation (CPRF) and horizontal loading

New Exhibition Hall 3 in Frankfurt am Main

- A-frame
- force transfer

Recommendations for the design of CPRF

- Piles have to be set directly under the load of the superstructure. The centre of the pile group should be under the centre of the loads.
- Few long piles are better than many short piles.
- The length of the piles has to be adapted to the loads. At the edge and the corners of the raft shorter piles and in the inner part of the raft longer piles are recommended.
- The calibration of the numerical model is necessary. Therefore the back analysis of pile load tests can be used.
- Optimum of the CPRF-coefficient:

Thank you for your kind attention!

www.geotechnik.tu-darmstadt.de