ESD LAYOUT CHECK TOOL: APPLICATION TO RF IC DESIGNS

DOLPHIN ABESSOLO-BIDZO

EMC-ESD IN DE PRAKTIJK NOVEMBER 9TH, 2016

EMC-ESD

SECURE CONNECTIONS FOR A SMARTER WORLD

ELEKTRUM | ARNHEM

9 NOVEMBER 2016

PUBLIC

Outline

- Introduction
- IC Level ESD
- HBM layout Simulations
- Predictive CDM Simulations
- Conclusions

1

Introduction

- Context:
 - -Rapidly increasing RF Complexity of RF BiCMOS IC designs
 - -Key Mobile, Internet Everywhere and Car Radio applications
- Extreme RF performance vs. NXP IC's ESD reliability requirements:
 - -Big challenge to achieve first time right silicon for both
 - -ESD layout check tools are essential to verify proper layout implementation
- ESD Layout Check tools are applied to RF IC designs in NXP propriety RF BiCMOS technology

IC Level ESD

- IC's can be exposed to ESD during assembly
- ESD on-chip protection is used to protect IC during manufacturing
- Qualification of IC by (JEDEC) standards:
 - -Human Body Model (HBM)
 - -Charged Device Model (CDM)
- Stresses are applied to all the pins of the IC

IC Level ESD: Human Body Model (HBM)

 HBM: Where a charged human gets discharged by making contact to exposed IC pins

IC Level ESD: Charged Device Model (CDM)

CDM Characteristics

Qualification Level	500V
Pulse Width	~1.5ns
Rise Time	100-300ps
Peak Current*	1-15A

* IC package dependent

 CDM: IC packages that acquire charge can discharge to ground through their pins

HBM LAYOUT SIMULATIONS

Backend view

- An integrated 800µm x 800µm low noise amplifier (LNA) and switch
- Processed in an NXP proprietary BiCMOS technology
- Integrated circuit used in RF modules for mobile applications

HBM Failure Mechanism

- During HBM zap, a high clamping voltage is built up across the ESD diode
- Leading to observed HBM failure: breakdown of the ESD diode

HBM Simulations: Input Data

HBM Simulations: ESD Violations (1)

High current density crowding is observed in the ESD diodes area

HBM Simulations: ESD Violations (2)

HBM Sim.	Zap name	Vclamp (V)	lpeak (A)	Reff (Ω)	Stress,%
Fail	VCC vs. PinA	11.7	1.3	8.4	488%
Pass	VCC vs. PinA	8.6	1.3	4.2	0%

- High ESD current density (488 % Stress !) reported in the ESD diodes area by the HBM simulations
- The observed HBM failure mechanism is identified by HBM simulations successfully !
- A redesign metal fix was implemented and the HBM simulations reported NO violation (0 % Stress !)
- This was further confirmed with silicon results with HBM qualification pass.
 PUBLIC

PREDICTIVE CDM SIMULATIONS

CDM Tester Model

- Model has been calibrated on Standard ESDA verification modules
- Simulated waveforms agreed with measured current discharges

CDM Simulations: Substrate Modeling

 A 3.5mm x 3.3mm Silicon Tuner IC processed in an NXP proprietary BiCMOS technology

The substrate coupling of the die is extracted with a 3D high frequency
electromagnetic solver @ 1.1GHz

CDM Simulations: IC Package Model

- IC package influences the CDM discharge significantly
- Accurate Spice simulation model required
- Based on Time Domain Reflectometry (TDR) measurements

CDM Discharge Simulations

- Good agreement simulation and measurement
- R_{ARC} = 30 Ω arc impedance (used as fitting parameter for Ipeak)

Cross-Domain CDM Fail

- Failure mode: passed 400V but failed -500V
- Gate-source defect in an NMOST → cross-domain circuit VDD4-VSS1
- Antenna diode does not prevent CDM failure
- Note: The central ESD clamp is not shown

Cross-Domain Voltage Simulation

Simulation explains

- -Failure mode (Gate oxide breakdown)
- -No CDM X-domain failure in VDD4-VSS3
- The failure mode was fixed
- A local CDM clamp was added in parallel to the antenna diode

CONCLUSIONS

Conclusions

- The HBM simulations have been silicon calibrated successfully and are useful:
 - -to verify ESD design guidelines are met
 - -to highlight weak areas of IC designs
 - -to report current density violations and high resistance paths
- This predictive CDM simulation method is efficient to:
 - -understand the CDM discharge mechanism in IC's
 - -improve the predictability of CDM robustness of the IC's
- ESD Layout Check Tools are applied, implemented and used for RF IC designs before tape-out within NXP Semiconductors

SECURE CONNECTIONS FOR A SMARTER WORLD