

The advantages of transformers

EMC-ESD in de praktijk 09-11-2016 Jan-Kees van der Ven

Introduction

- RH Marine
- Additional benefits
 - Common mode reduction LF
 - Harmonic reduction
 - Common mode reduction HF
 - Fault current reduction
 - Reduction of Short circuit power
- Points of attention
 - Transients
 - Temperature

RH Marine Segments

RH Marine Rhodium family

The transformer

 $\frac{V_P}{V_S} = \frac{I_S}{I_P} = \frac{N_P}{N_S}$

https://en.wikipedia.org/wiki/Transformer#/media/File:Transformer3d_col3.svg

COMMON MODE REDUCTION LF

Common mode attenuation

Differential mode and common mode currents

Common mode attenuation

Common mode attenuation at low frequencies

Magnetic flux

As long as proper shape transformer core is chosen!!!

HARMONIC REDUCTION

Reduction of harmonics, multiples of three

Reduction of harmonics \neq n*3

Reduction of harmonics \neq n*3

Rectifier	Generated harmonics	5	7	11	13	17	19	23	25	29	31	35	37	41	43	47	49
6 pulse	6*n ± 1:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
12 pulse	12*n ± 1			Х	Х			Х	Х			Х	Х			Х	Х
18 pulse	18*n ± 1					Х	Х					Х	Х				
24 pulse	24*n ± 1							Х	Х							Х	Х
48 pulse	48*n ± 1															Х	Х

COMMON MODE REDUCTION HF

Common mode attenuation example

Common mode attenuation

Transformer attenuation

Common mode attenuation

FAULT CURRENT REDUCTION

Reduction of fault currents in IT power grids

IT power grid

TN power grid

- "Protection against electrocution"
- Continuity of supply

Reduction of fault currents in IT power grids

System: 440 V, 60 Hz, IT

(parasitic) capacitance to earth	I_earth fault	Consequence
100 nF	30 mA	Electrocution
1 → 16.7 µF	0.3 → 5 A	Fire risk

(Parasitic) Capacitances to earth in an installation:

- Cables 0.1 ... 0.2 μF per km
- Motors 0.1 ... 0.3 μF , depending on size
- Generators $0.1 \dots 0.3 \mu$ F, depending on size
- EMI filters 0.05 ... 3 µF (!), depending on rating

REDUCTION OF SHORT CIRCUIT POWER

- Total installed power: 95,000 kW
- Thrusters: 12 x 6050 kW non-retractable, fixed pitch, variable speed

EMC-FSD

9 NOVEMBER 2016

$$I_{FL_sec} = \frac{S_{rated/phase}}{U_{sec}/_{\sqrt{3}}} = \frac{4.000.000/_3}{440/_{\sqrt{3}}} = 5.2 \ kA$$
$$I_{SC_sec} = I_{FL_sec}/Z_{tr} (Z_{tr}[\%]) = 5248/0.06 = 87 \ kA$$

	4 MVA (6%)	240 kVA (4%)
Isc	87 kA	15 kA

- National Fire Protection Association
- NFPA 70E[®] Standard for Electrical Safety in the Workplace
- Table 130.7(C)(15)(A)(b) Arc-Flash Hazard PPE Categories for Alternating Current (ac) Systems
- The arc flash boundary shall be the distance at which the incident energy equals 5 J/cm2 (1.2 cal/cm2).

Equipment Reduction of short circuit powers	Arc Flash PPE Category	Arc-Flash Boundary
Panelboards or other equipment rated 240 V and below Parameters: Maximum of 25 kA short-circuit current available; maximum of 0.03 sec (2 cycles) fault clearing time; working distance 455 mm (18 in.)	1	485 mm
Panelboards or other equipment rated >240 V and up to 600 V Parameters: Maximum of 25 kA short-circuit current available; maximum of 0.03 sec (2 cycles) fault clearing time; working distance 455 mm (18 in.)	2	900 mm
600-V class motor control centers (MCCs) Parameters: Maximum of 65 kA short-circuit current available; maximum of 0.03 sec (2 cycles) fault clearing time; working distance 455 mm (18 in.)	2	1.5 m
600-V class motor control centers (MCCs) Parameters: Maximum of 42 kA short-circuit current available; maximum of 0.33 sec (20 cycles) fault clearing time; working distance 455 mm (18 in.)	4	4.3 m

ABB 2CDS253001R0325 Zekeringautomaat 3-polig 32 A

**** <u>1 review</u>

Q

Direct naar: Beschrijving > Reviews >

Accessoires >

6 kA Automaat 3-polig B kar 32A

Download >

RISKS TRANSIENTS

High voltage peaks?

No: Highest peak measured was 17 kV. For a 11 kV transformer winding this is not high at all.

High rate of rise (dU/dt)? Yes:

dU/dt measured as high as 130 kV/ μ s. This is extremely high.

9 NOVEMBER 2016

RISKS TEMPERATURE

Cooling aspects

Cooling aspects

Cooling aspects

- Space requirements
- Heating by harmonics
- Internal circulating currents

THANK YOU FOR YOU ATTENTION

