

Medical Applications of Nuclear Radiation and Isotopes

Syed M. Qaim

Forschungszentrum Jülich and Universität zu Köln, Germany *E-mail:* s.m.gaim@fz-juelich.de

Lecture delivered at the KIVI-NNS Symposium entitled, "75 Years of Nuclear Reactors: A Chain Reaction of Applications", held at Science Centre, TU Delft, The Netherlands, 3 November 2017

Introd					
Radioactivity in Medicine Historical Development					
1920s	Biological experiments with natural radioactivity - use of ThB(²¹² Pb) to study movement of Pb in plants (1923) - use of RaE(²⁰¹ Bi) to study metabolism of Bi in rabbits (1924) (G. v. Hevesy)				
1930s	 Biological experiments with artificial radioactivity First use of Ra/Be neutrons to induce radioactivity (1934) (E. Fermi) Production of ³²P via ³²S(n,p)-reaction (1935) Studies on phosphorus metabolism in rats (³²P) (O. Chievitz, G. v. Hevesy) (Tracer principle) 				
November 2017	 Development of cyclotron (1932) (E.O. Lawrence) Cyclotron production of ¹¹C, ^{99m}Tc, ¹³¹I (late 1930s) Discovery of fission (1938) (O. Hahn and F. Straßmann) 				

Radioactivity in Medicine Historical Development (Cont´d)					
1940s	 Construction of first nuclear reactor (1942) (E. Fermi) Medical application of cyclotron radionuclides Use of ¹³¹I in therapy (1939) (J.G. Hamilton, M.H. Soley) Inhalation studies using ¹¹CO (1945) (C.A. Tobias, J.H. Lawrence, F. Roughton) 				
1946 onwards	Availability of many long-lived reactor produced radionuclides, e.g. ³ H, ¹⁴ C, ³² P, ⁶⁰ Co, ^{125,131} I for studies in biochemistry, pharmacology, therapy				
1960 onwards	Production of large number of short-lived radionuclides using cyclotrons for in-vivo studies				
Today	 About 400 research reactors and 500 cyclotrons partly used for radionuclide production. Radioisotope applications as big an enterprisens nuclear energy production. 				

Commonly Us Radiopharma	FORSCHUNGSZENTR
Radiopharmaceuticals	Function
^{99m} Tc – HMPAO	Brain blood flow
^{99m} Tc – ECD	Brain blood flow
^{99m} Tc – sestamibi	Heart blood flow
^{99m} Tc - tetrofosmin	Heart blood flow
^{99m} Tc – DMSA	Renal function
^{99m} Tc – TRODAT	Dopamin-transporter
¹¹¹ In – DTPA-D-Phe-1-octreotide	Somatostatin receptor ligand
¹¹¹ In – pentetreotide	Somatostatin receptor ligand
¹²³ I – IMP	Brain blood flow
$^{123}I - IBZM$	Dopamin2-receptor-ligand
¹²³ I – iomazenil	Benzodiazepine receptor ligand
¹²³ I – epidepride	Dopamin2-receptor-ligand
$^{123}I - \beta - CIT$	Dopamin-transporter
²⁰¹ TlCl	Heart blood flow

PET Imaging of Brain of a Stroke Patient administered with ¹⁸FDG

Decreased uptake of ¹⁸FDG in infarct region (circle) as well as in the brain skin (arrow)

An important information for the neurologist for therapy planning

November 2017

Non-standard Positron Emitters for Medical Applications Produced via Low-energy Reactions

			Qaim, RCA 99, 611 (2011)
Nuclide	Major production route	Energy range [MeV]	Application
⁵² Mn (5.6 d)	⁵² Cr(p,n)	14 → 9	Multimode imaging (PET + MRI)
⁵⁵ Co (17.6 h)	⁵⁸ Ni(p,α) ⁵⁴ Fe(d,n)	$15 \rightarrow 7$ $10 \rightarrow 5$	Tumour imaging; neuronal Ca marker
⁶⁴ Cu (12.7 h)	⁶⁴ Ni(p,n)	14 → 9	Radioimmunotherapy
⁷² As (26.0 h)	^{nat} Ge(p,xn)	18 → 8	Tumour localisation; immuno- PET
⁷⁶ Br (16.0 h)	⁷⁶ Se(p,n)	$15 \rightarrow 8$	Radioimmunotherapy
^{82m} Rb (6.2 h)	⁸² Kr(p,n)	$14 \rightarrow 10$	Cardiology
⁸⁶ Y (14.7 h)	⁸⁶ Sr(p,n)	$14 \rightarrow 10$	Theranostic approach
⁸⁹ Zr (78.4 h)	⁸⁹ Y(p,n)	$14 \rightarrow 10$	Immuno-PET
^{94m} Tc (52 min)	⁹⁴ Mo(p,n)	$13 \rightarrow 8$	Quantification of SPECT
¹²⁰ I (1.3 h)	¹²⁰ Te(p,n)	13.5 ightarrow 12	lodopharmaceuticals
¹²⁴ I (4.2 d)	¹²⁴ Te(p,n)	12 → 8	Tumour targeting; dosimetry

November 2017