Medical Applications of Nuclear Radiation and Isotopes

Syed M. Qaim
Forschungszentrum Jülich and Universität zu Köln, Germany
E-mail: s.m.qaim@fz-juelich.de

Lecture delivered at the KIVI-NNS Symposium entitled, “75 Years of Nuclear Reactors: A Chain Reaction of Applications”, held at Science Centre, TU Delft, The Netherlands, 3 November 2017

Outline

- Introduction: Historical and general
- Radiation therapy
- Internal use of radionuclides
 - Diagnosis
 - Therapy
- Research oriented radionuclides
- New directions in radionuclide applications
- Conclusions
Introduction

Radioactivity in Medicine

Historical Development

1920s

Biological experiments with natural radioactivity
- Use of ThB\(^{(212}\text{Pb})\) to study movement of Pb in plants (1923)
- Use of RaE\(^{(201}\text{Bi})\) to study metabolism of Bi in rabbits (1924)
 (G. v. Hevesy)

1930s

Biological experiments with artificial radioactivity
- First use of Ra/Be neutrons to induce radioactivity (1934)
 (E. Fermi)
- Production of \(^{32}\text{P}\) via \(^{32}\text{S}(n,p)\)-reaction (1935)

 Studies on phosphorus metabolism in rats (\(^{32}P\))
 (O. Chievitz, G. v. Hevesy)
 (Tracer principle)
- Development of cyclotron (1932)
 (E.O. Lawrence)
- Cyclotron production of \(^{11}\text{C}\), \(^{99m}\text{Tc}\), \(^{131}\text{I}\) (late 1930s)
- Discovery of fission (1938)
 (O. Hahn and F. Straßmann)

Radioactivity in Medicine

Historical Development (Cont’d)

1940s

- Construction of first nuclear reactor (1942)
 (E. Fermi)
- Medical application of cyclotron radionuclides
 Use of \(^{131}\text{I}\) in therapy (1939)
 (J.G. Hamilton, M.H. Soley)
 Inhalation studies using \(^{17}\text{CO}\) (1945)
 (C.A. Tobias, J.H. Lawrence, F. Roughton)

1946 onwards

Availability of many long-lived reactor produced radionuclides, e.g. \(^{3}\text{H}\), \(^{14}\text{C}\), \(^{32}\text{P}\), \(^{60}\text{Co}\), \(^{125,131}\text{I}\)
for studies in biochemistry, pharmacology, therapy

1960 onwards

Production of large number of short-lived radionuclides using cyclotrons for in-vivo studies

Today

- About 400 research reactors and 500 cyclotrons partly used for radionuclide production.
- Radioisotope applications as big an enterprise as nuclear energy production.
Radioactivity in Medicine

General

Diagnostic investigations

- Perfusion rates
- Metabolic turnover rates
 - oxygen
 - glucose
 - fatty acids
 - amino acids
- Receptor occupancy
- Immuno reactions

Radiation dose should be minimum.

Radiotherapy

- External radiation therapy (with γ, n, p or heavy ion)
- Internal radionuclide therapy (using highly-ionising radiation)

Selective specific dose needs to be applied.

External Radiation Therapy

Types of Therapy

- **Photon therapy**: use of ^{60}Co or linear accelerator
 (low-LET radiation) most common
- **Slow neutron capture therapy**
 (use of reactor neutrons) seldom
- **Fast neutron therapy**: accelerator with E_p or E_d above 50 MeV
 (high-LET radiation) being abandoned
- **Proton beam therapy**: accelerator with $E_p = 70 - 250$ MeV
 (treatment of deep-lying, tumours) increasing significance
- **Heavy-ion beam therapy**
 (rather specialized) limited application

A large number of patients worldwide undergo photon therapy.
Charged-Particle Therapy

• Charged particles used: p, α, \(^{12}\text{C}\), \(^{14}\text{N}\), etc.

Depth-dose relationship

- Charged-particle dose increases with the penetration depth, reaching a maximum in the Bragg peak area.
- Major advantage of charged-particle therapy is the capability to treat deep-lying tumours, close to critical structures.
- Heavy-ion therapy is specialized; proton therapy is more common.

Patient care studies are done still mostly through photon therapy.

Internal Use of Radionuclides in Medicine

Criteria

• Physical properties
 - detection efficiency
 - radiation dose

• Biochemical properties
 - selectivity
 - suitable kinetics
Radioactive Tracers in Medicine

Radiotracer is a radionuclide in a well defined chemical form, e.g. 22NaCl, [99mTc] labelled compound

Problems
- Small amount of material (< 10^{-10} g)
- High level of radioactivity
- Short half-life

Advantages
- Dynamic studies from outside of the body
- Biological equilibrium undisturbed (no toxicity effect)
 (organ imaging at real molecular level)
- Study of physiological function

> Fast, efficient, remotely controlled working methods mandatory

Radionuclides Commonly used in Nuclear Medicine

Diagnostic Radionuclides
- For SPECT
 - γ-emitters (100 – 250 keV)
 - 99mTc, 123I, 201Tl
 (used worldwide)
- For PET
 - β^+ emitters
 - 11C, 13N, 15O, 18F,
 - 68Ge (68Ga), 82Sr (82Rb)
 (fast developing technology)

Therapeutic Radionuclides (in-vivo)
- β^--emitters (32P, 90Y, 131I, 153Sm, 177Lu)
- α-emitter (211At, 223Ra)
- Auger electron emitters (111In, 125I)
- X-ray emitter (103Pd)
 (increasing significance)

Production methods are generally well developed.
Commonly Used SPECT Radiopharmaceuticals

<table>
<thead>
<tr>
<th>Radiopharmaceuticals</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>99mTc – HMPAO</td>
<td>Brain blood flow</td>
</tr>
<tr>
<td>99mTc – ECD</td>
<td>Brain blood flow</td>
</tr>
<tr>
<td>99mTc – sestamibi</td>
<td>Heart blood flow</td>
</tr>
<tr>
<td>99mTc – tetrofosmin</td>
<td>Heart blood flow</td>
</tr>
<tr>
<td>99mTc – DMSA</td>
<td>Renal function</td>
</tr>
<tr>
<td>99mTc – TRODAT</td>
<td>Dopamin-transporter</td>
</tr>
<tr>
<td>111In – DTPA-D-Phe-1-octreotide</td>
<td>Somatostatin receptor ligand</td>
</tr>
<tr>
<td>111In – pentetreotide</td>
<td>Somatostatin receptor ligand</td>
</tr>
<tr>
<td>123I – IMP</td>
<td>Brain blood flow</td>
</tr>
<tr>
<td>123I – IBZM</td>
<td>Dopamin2-receptor-ligand</td>
</tr>
<tr>
<td>123I – iomazenil</td>
<td>Benzodiazepine receptor ligand</td>
</tr>
<tr>
<td>123I – epidepride</td>
<td>Dopamin2-receptor-ligand</td>
</tr>
<tr>
<td>123I – β – CIT</td>
<td>Dopamin-transporter</td>
</tr>
<tr>
<td>201TlCI</td>
<td>Heart blood flow</td>
</tr>
</tbody>
</table>

Security of Supply of 99Mo/99mTc

Observations and Comments

- Due to ageing reactors, production via 235U(n,f)-route in jeopardy.
- Enhanced use of accelerators suggested (Ruth, 2009).
- Several processes under consideration: (p,f), (γ,f), (p,xn), (γ,n)
- All routes evaluated (Van der Marck, 2010; Qaim, 2014; Wolterbeek, 2014)
- Direct production of 99mTc via 100Mo(p,2n)-reaction is promising.
 - Considerable development work underway. However,
 - large effort
 - low yield
 - low specific activity
 - This route may solve local problem but not global shortage.

Potentially promising approaches

- Development of low specific activity 99Mo generators
- Fission of natU with spallation type neutrons
Security of Supply of 99Mo/99mTc (contd.)

Analysis of present status

- NEA-High Level Group on the Security of Supply of Medical Isotopes (Paris)
 Analysis of supply/demand situation (2017) indicates
 - more effective use of existing facilities
 - some new emerging facilities (Australia, China)
 - adequate level of supply capacity till 2022

Nonetheless, continuous development efforts are needed for security of supply of this very important radionuclide also in the future.

Positron Emission Tomography (PET)

Quantitative imaging
Flow Sheet of Production of Short-lived PET Radiopharmaceuticals

ACCELERATOR
- nuclear reaction
- in-situ recoil

TARGET
- on-line synthesis

PRECURSOR
- off-line synthesis

INTERMEDIATE

FINAL PRODUCT

PURIFICATION
- quality control
- • radionuclidic
- • radiochemical
- • chemical
- • pharmaceutical

QUALITY CONTROL

MEDICAL APPLICATION

Fast, automated methods of production are absolutely necessary

Synthesis of 2-[\(^{18}\text{F}\)]FDG

Irradiation (1h, 100µA)

Purification evaporation 10 min

Substitution 7 min

Hydrolysis 10 min

Purification 10 min

 sterilized injectable solution

Hamacher et al., JNM 27, 235 (1986)
PET Imaging of Brain of a Stroke Patient administered with 18FDG

An important information for the neurologist for therapy planning

Decreased uptake of 18FDG in infarct region (circle) as well as in the brain skin (arrow)

Recent Progress in Medical Application of Radiotracers

- New efficient automated production methods
- High intensity dedicated accelerators
- Fast labelling, separation and purification methods (GC, HPLC)
- High resolution emission tomographs (SPECT, PET)

For routine PET applications, complete technology (cyclotron, radiosynthesis apparatus, tomograph) is commercially available.

Major applications in neurology, cardiology and oncology.
Diagnosis of Brain Tumour

Amino acids are more suited for diagnosis of brain tumour.
Internal Radionuclide Therapy

- **Brachytherapy**
 (insertion of sealed sources near the tumour)
 Examples: ^{192}Ir as wire
 ^{103}Pd and ^{125}I as seeds

- **Administration in cavities**
 (for pain palliation)
 Examples: ^{32}P colloid for arthritis
 ^{90}Y, ^{186}Re and ^{188}Re complexes for joint inflammation

- **Metabolic therapy**
 (incorporation of radionuclide via a biochemical path)
 Examples: ^{131}I for thyroid cancer
 ^{89}Sr, ^{186}Re and ^{153}Sm are bone seekers

- **Radioimmunotherapy**
 (administration of a radionuclide chemically conjugated to antibodies)
 Examples: low-energy high-LET value radionuclides

Therapeutic radionuclides are generally produced in nuclear reactors, but use of accelerators is increasing.

Summary of Present Status of Use of Radionuclides in Medicine

Diagnosis

- 40 million diagnostic investigations/year using ^{99m}Tc and SPECT
- 5 million patients/year investigated using $^{[18}\text{F}]\text{FDG}$ and PET

Therapy

- Several million treatments/year via external radiation therapy
- A sizeable number of patients/year undergo internal radionuclide therapy, e.g. thyroid cancer with ^{131}I.

November 2017
Research Oriented Radionuclides

- Non-standard positron emitters
 - to study slow metabolic processes
 - to quantify targeted therapy
- Novel low-range highly ionising radiation emitters for internal radiotherapy
 - for targeted therapy

Continuous development work is underway.

Emphasis is on metal radionuclides.

Non-standard Positron Emitters for Medical Applications Produced via Low-energy Reactions

Qaim, RCA 99, 611 (2011)

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Major production route</th>
<th>Energy range [MeV]</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>52Mn (5.6 d)</td>
<td>52Cr(p,n)</td>
<td>14 \rightarrow 9</td>
<td>Multimode imaging (PET + MRI)</td>
</tr>
<tr>
<td>55Co (17.6 h)</td>
<td>55Ni(p,α) 54Fe(d,n)</td>
<td>15 \rightarrow 7 10 \rightarrow 5</td>
<td>Tumour imaging; neuronal Ca marker</td>
</tr>
<tr>
<td>84Cu (12.7 h)</td>
<td>64Ni(p,n)</td>
<td>14 \rightarrow 9</td>
<td>Radioimmunotherapy</td>
</tr>
<tr>
<td>72As (26.0 h)</td>
<td>natGe(p,xn)</td>
<td>18 \rightarrow 8</td>
<td>Tumour localisation; immuno-PET</td>
</tr>
<tr>
<td>76Br (16.0 h)</td>
<td>76Se(p,n)</td>
<td>15 \rightarrow 8</td>
<td>Radioimmunotherapy</td>
</tr>
<tr>
<td>82Rb (6.2 h)</td>
<td>82Kr(p,n)</td>
<td>14 \rightarrow 10</td>
<td>Cardiology</td>
</tr>
<tr>
<td>89Y (14.7 h)</td>
<td>86Sr(p,n)</td>
<td>14 \rightarrow 10</td>
<td>Theranostic approach</td>
</tr>
<tr>
<td>90Zr (78.4 h)</td>
<td>88Y(p,n)</td>
<td>14 \rightarrow 10</td>
<td>Immuno-PET</td>
</tr>
<tr>
<td>94Tc (52 min)</td>
<td>94Mo(p,n)</td>
<td>13 \rightarrow 8</td>
<td>Quantification of SPECT</td>
</tr>
<tr>
<td>120I (1.3 h)</td>
<td>120Te(p,n)</td>
<td>$^{13.5}$ \rightarrow 12</td>
<td>Iodopharmaceuticals</td>
</tr>
<tr>
<td>124I (4.2 d)</td>
<td>124Te(p,n)</td>
<td>12 \rightarrow 8</td>
<td>Tumour targeting; dosimetry</td>
</tr>
</tbody>
</table>
Novel Radionuclides for Therapy

Examples:

- 67Cu ($T_{1/2} = 2.6$ d; $E_{\beta^{-}} = 577$ keV)
- 186Re ($T_{1/2} = 3.7$ d; $E_{\beta^{-}} = 1070$ keV)
- 225Ac ($T_{1/2} = 10.0$ d; $E_{\alpha} = 5830$ keV)
- 193mPt ($T_{1/2} = 4.3$ d; Auger electrons)

Applications in targeted therapy.

For production, large-sized multiple particle accelerators are needed.

Targeted α-Radiation Therapy

Example: 213Bi ($T_{1/2} = 46$ min; $E_{\alpha} = 5900$ keV) from 225Ac generator

Prostate-specific membrane antigen radioligand therapy (PSMA-RLT)

- 177Lu-PSMA successfully applied, but some patients show radioresistance to β^{-} radiation
- New approach: 213Bi-PSMA

M. Sathekge et al., EJNMMI 44, 1099 (2017)

68Ga-PSMA (PET-CT scan)

Pre-therapy

Targeted α-radiation therapy appears promising.

68Ga-PSMA (PET-CT scan)

Post-therapy

(11 months after 213Bi-PSMA)
New Directions in Radionuclide Applications

- **Theranostic approach**
 (combination of PET/Therapy)
 $^{64}\text{Cu}/^{67}\text{Cu}$, $^{86}\text{Y}/^{90}\text{Y}$, etc.

- **Multimode imaging**
 (combination of PET/CT and PET/MRI)

- **Radioactive nanoparticles**
 Possible improvement in delivery of radionuclide to tumour

Continuous radionuclide research is underway.

Theranostic Approach

- Addition of β^+ emitting ^{86}Y analogue to the therapy nuclide ^{90}Y
- Uptake of $[^{86}\text{Y}]\text{Citrate}$ determined using PET

Herzog et al., JNM 34, 2222 (1993).

Accurate dose calculation possible
Rösch, Herzog, Qaim, Pharmaceuticals 10, 56 (2017)
Conclusions

- Nuclear reactors and accelerators have revolutionised medicine.
- Radiotracer and imaging technologies are well established. Patient care studies are routinely performed (diagnosis and therapy).
- Biological functions can be investigated dynamically at real molecular level (study of disease development at early stage).
- Combination of radioactivity with other emerging technologies is opening up new vistas in medical research.
- Development work involves nuclear, chemical and biological research as well as technological innovation; interdisciplinary cooperation is vital.

Interesting science and human-health related technology; future perspectives are bright.