KIVI WEBINAR

WHAT IS THE IMPACT OF AUTONOMOUS DRIVING ON TRAFFIC SAFETY?

DR. IR. OLAF OP DEN CAMP

 \sim

SMART SOLUTIONS FOR CLIENTS & PARTNERS

KNOWLEDGE TRANSFER (10%)

Knowledge exploitation by spin-offs, licences, in partnership with other companies

> CLIENTS & PARTNERS

<u>کر</u>

DEVELOP FUNDAMENTAL KNOWLEDGE (10%)

Together with universities

KNOWLEDGE APPLICATION (40%)

Contract research for and with clients

KNOWLEDGE DEVELOPMENT (40%)

In public-private partnership with partners from the golden triangle

WE DO THIS BY TAKING A MULTIDISCIPLINARY APPROACH

TNO TURNOVER (MLN EURO)

TNO NUMBER OF EMPLOYEES 3431

Source: TNO annual report 2019

DR. IR. OLAF OP DEN CAMP

Senior Consultant Integrated Vehicle Safety,

TNO Helmond, the Netherlands

Technical Lead Safety Assessment Framework (Methodology & Tools)

Nanyang Technological University, Singapore

- ERTRAC Safe Road Transport Roadmap, Towards Vision Zero: Roads without Victims, ERTRAC Working Group Road Transport Safety & Security, https://www.ertrac.org/uploads/documentsearch/id58/ERTRAC-Road-Safety-Roadmap-2019.pdf, 2019
- StreetWise, Scenario-Based Safety Validation of Connected and Automated Driving, Hala Elrofai, Jan-Pieter Paardekooper, Erwin de Gelder, Sytze Kalisvaart, Olaf Op den Camp, July 2018, <u>www.tno.nl/StreetWise</u>
- Scenario Categories for the Assessment of Automated Vehicles, E. de Gelder, O. Op den Camp and N. de Boer, 2020. [Online]. Available: http://www.cetran.sg/publications
- Nudging Concepts for Traffic Safety: In-vehicle implementations and Field Trial Outcomes, Dr. Olaf Op den Camp (TNO) and Dr. Mikael Ljung Aust (Volvo Cars Safety Centre), 29th Aachen Colloquium Sustainable Mobility 2020
- Cyclist Target and Test Setup for Evaluation of Cyclist-Autonomous Emergency Braking, Olaf Op den Camp, Sjef van Montfort, Jeroen Uittenbogaard and Joke Welten, Int. J. Automotive Technology, Vol. 18, No. 6, pp. 1085-1097, 2017.

ERTRAC WG Road traffic safety and security

earpa EARPA FG Connectivity, Automation and Safety

TNO COPYRIGHT ©2021

CONTENTS

- **BASICS FOR VEHICLE SAFETY**
- HISTORIC TRENDS IN TRAFFIC CASUALTIES CAUSES OF ACCIDENTS
- TRENDS IN VEHICLE AUTOMATION
- SAFETY ASSESSMENT CHALLENGES AND NEEDS
- TNO STREETWISE SCENARIO-BASED SAFETY ASSESSMENT
- CONCLUSION

BASICS FOR VEHICLE SAFETY

SAFETY SOLUTIONS

- Injury mitigation:
 - Pop-up bonnet

- Windshield airbag

- Personal protection equipment

SAFETY SOLUTIONS

- Collision avoidance / mitigation:
 - Forward collision warning

- Autonomous Emergency Braking

Nudging versus AEB/FCW

HISTORIC TRENDS IN TRAFFIC CASUALTIES

innovation for life

ACCIDENT STATISTICS GERMANY 1953 – 2006

ACCIDENT TRENDS FOR CYCLISTS (EUROPE, NL)

• Trends show a need for enhanced cyclist protection in car-2-cyclist accidents

ACCIDENT TREND FOR EU

ROAD SAFETY IN THE EU

TNO COPYRIGHT ©2021

CAUSES OF ACCIDENTS AND SOLUTIONS

Causes of accidents:

Solutions:

source: Volvo Car Corporation

TRENDS IN VEHICLE AUTOMATION

AUTOMATION LEVELS ACCORDING TO SAE J3016

	S/E LEVEL 0	SÆ LEVEL 1	SÆ LEVEL 2	SÆ LEVEL 3	SÆ LEVEL 4	SÆ LEVEL 5
What does the human in the driver's seat have to do?	You <u>are</u> driving whenever these drive are engaged – even if your feet are o you are not steering		support features If the pedals and	You <u>are not</u> driving when these aut mated driving features are engaged – even if you are seated in "the driver's seat"		
	You must constantly supervise these you must steer, brake or accelerat maintain safety		support features; as needed to	When the feature requests, you must drive	These automated will not requi over o	driving features e you to take riving
	These are driver suppor		features	These are automated drivi		ng features
What do these features do?	These features are limited to providing warnings and momentary assistance	These features provide steering OR brake/ acceleration support to the driver	These features provide steering AND brake/ acceleration support to the driver	These features ca under limited co not operate un condition	This feature can drive the vehicle under all conditions	
Example Features	 automatic emergency braking blind spot warning lane departure warning 	 lane centering OR adaptive cruise control 	 lane centering AND adaptive cruise control at the same time 	• traffic jam chauffeur	 local driverless taxi pedals/ steering wheel may or may not be installed 	 same as level 4, but feature can drive everywhere in all conditions
,	γ			Ŷ		,
	Current as method	ig ifety assessme	nt			

TNO innovation for life

TNO COPYRIGHT ©2021

AUTOMATION LEVELS ACCORDING TO SAE J3016

TNO COPYRIGHT ©2021

SAFETY ASSESSMENT, CHALLENGES AND NEEDS

innovation for life

TNO COPYRIGHT ©2021

Second and a

ALL A

+ 24 - 24 -2.

15 46 Van

- lail

14121

L.Conte

Eus(

Ready for **all** road situations, in different countries?

How to handle the test

explosion? 100 million km?

Have we tested enough?

1.7

a do

I can no longer test AD functions independently

How do vehicles behave around our vehicle?

ton and and

How to convince road authorities?

REQUIREMENTS TO SAFETY ASSESSMENT FRAMEWORKS

- SPECIFIC "good" systems should pass the assessment, "bad" systems should fail
- FAIR method for assessment should be the same for all, not same tests, but same method
- **ROBUST** should be able to handle different automation levels, different Operational Design Domains
- > UNDERSTANDABLE/EXPLAINABLE should be understood (agreed) by all stakeholders, should be explainable to the general public (acceptance)
- **EFFICIENT** should be able to deal with the shear infinite number of possible tests (Euro NCAP > 440 tests!)
- **SUSTAINABLE** method should be able to consider the new technologies that are entering the market over the next decade

TNO COPYRIGHT ©2021

PROPOSED SAFETY ASSESSMENT FRAMEWORK

Safety assessment, milestone stepwise approach

- Milestone M1 Safety driver take-over test
- Milestone M2a Emergency response test
- Milestone M2b Basic navigation tests
- Milestone M3 incl. <u>vehicle driving license</u>, and monitored deployment mandatory (requirements for reporting)
- Milestone M4 incl. <u>vehicle driving license</u>, and (light) monitored deployment mandatory (requirement for reporting)

Controlled and monitored AV vehicle fleet deployment

>TNO STREETWISE

STREETWISE SOLUTION

What is StreetWise?

- > Automated identification and classification of scenarios from 'object-level' data collected in driving many kilometres in relevant traffic situations.
- Methodology to generate test cases for the assessment of a system- or function-under-test based on the relevant scenarios in the StreetWise database
- Scenarios are shared between partners in the automotive industry, collected for different regions, countries, and continents
- Provides statistics (distributions) for the parameters describing the occurrence of a scenario, which is indispensable information to quantify completeness, exposure, and risk

Objectives

- > Worldwide harmonization of data-driven scenario-based safety assessment for connected cooperative automated driving systems.
- > Common understanding of scenarios and assessment methods leads to:
 - Understanding & acceptance of assessment results
 - True comparison in performance of different systems
- Sharing the effort of data collection, scenario identification and test case generation

REAL-WORLD SCENARIOS

- An overview of real-world scenarios (and variations) to which a subject vehicle needs to respond, is required for:
 - Development & testing (industry internal validation)
 - Safety assessment (type approval for authorities or consumer testing for consumer organizations)
- A scenario describes <u>any situation</u> on the road including the <u>intent</u> of the subject vehicle, the <u>behavior of road users</u>, the <u>road layout</u>, and weather & lighting <u>conditions</u>. A drive on the road is considered a continuous sequence of scenarios – which might overlap.
- Scenarios are essential to generate test cases for the assessment of system performance in the subject vehicle. Assessment concerns:
 - Perception and identification performance of the subject vehicle's sensor set (also in adverse conditions). This includes sensor fusion;
 - Interaction, decision & control logic: performance regarding interpretation of the world-model, the potential interaction with other road users (e.g. through communication) and decision on an appropriate response;
 - Dynamic vehicle response: what is the delay in controlling the actuators, and how well does the vehicle respond to the actuation under different conditions;
 - Driver response tests (human-machine interaction in relation to human capabilities, transition-of-control).
- Scenarios are also important for setting up system specifications for a vehicle's ADAS or CADS in the development stage: the vehicle's operational design domain (ODD) as well as the dynamic driving task (DDT)

DEFINITIONS: SCENARIO, TEST CASE, ODD (OPERATIONAL DESIGN DOMAIN)

SCENARIO EXAMPLE

DEFINITIONS: SCENARIO, TEST CASE, ODD (OPERATIONAL DESIGN DOMAIN)

Association for Standardization of Automation and Measuring Systems Adapted from: E. de Gelder, O. Op den Camp, and N. de Boer, "Scenario Categories for the Assessment of Automated Vehicles." Available at: <u>https://cetran.sg/publications/</u>, 2020.

ACTIVITY DETECTION – LONGITUDINAL

- > Longitudinal activities: accelerating, cruising, decelerating
- > Target speed: vertical dashed lines represent events separating activities.

ACTIVITY DETECTION – LATERAL

Lateral activities: lane change to the left, lane change to the right, lane followingDistance to lane marker: vertical dashed lines represent events separating activities.

SCENARIO PARAMETRISATION

Cut-in of target vehicle (T) onto the ego-vehicle (H)

- V_x^H : ego initial longitudinal velocity [m/s]
- ΔV_x^T : target initial relative longitudinal velocity with respect to ego [m/s]
- $\overline{V_y^T}$: target average lateral velocity relative to lane over the duration of the lane change [m/s]
- sign V_y : target lane change direction [-1: from left to right, 1: from right to left]
- THW_{LC} : time headway at start of lane change [s] = $\Delta x_0 / V_x^H$

 Δx_0 : distance between target and ego vehicle when target starts crossing the lane marking

Relative longitudinal speed of cutting-in vehicle [m/s]

innovation

for life

TNO COPYRIGHT ©2021

STREETWISE TOOL CHAIN

Target

Q

TNO COPYRIGHT ©2021

How to deal with systems that use Artificial Intelligence?

1:321

Franky + ME=1

65. 1180

Long

Evel

. 3

We focus on safety, but how can we guarantee cyber security?

How to test the increasingly complex human-vehicle interaction?

How to handle the danger of mode-confusion?

How can we cover the increased role of communication?

and a.D.

How to explain the complexity and how to involve road and vehicle authorities?

CONCLUSION

WHAT IS THE IMPACT OF VEHICLE AUTOMATION ON TRAFFIC SAFETY?

CERTAINLY

- Advanced driver assistance systems are becoming a standard in new vehicles
- The level of automation and digitalization in vehicles is increasing drastically
- All these systems aim at supporting the driver, and taking over dull tasks, and tasks that are difficult to handle by humans (emergency situations)
- In this way Connected Cooperative Automated Mobility adds to traffic safety

HOWEVER

- There is a huge challenge to proof safety of vehicles with high levels of automation that have many interactions with human drivers:
 - Mode confusion (system in control vs. human driver in control; large variety of human responses to system inputs – different people respond differently)
 - Differences in solutions introduced by automotive industry
 - Decreasing driver skills
- We need to keep paying attention to driver training and to forgiving roads (safe infrastructure)

AND

SOCIALIZATION OF AUTOMATED VEHICLES (ARTURO TEJADA) IS A KEY ELEMENT OF CONTINUOUS SAFETY ASSESSMENT

- To live with humans, dogs need to learn how to act in a way that humans want.
- How to play, eat and behave the way we expect.
- This is called
 "socialization".

- To interact with humans, cars need to learn how behave in a way that humans want.
- AVs need to learn how to drive and behave in traffic the way humans expect.
- AVs need to be socialized.

- Through Streetproof TNO wants to socialize automated vehicles.
- TNO is developing knowledge and technology to make AVs safe & social.
- To make AVs behave in a way that humans expect and want.

CONTINUOUS SAFETY ASSESSMENT ENSURES AVS WILL KEEP DRIVING SAFELY & SOCIALLY IN MIXED TRAFFIC

- > When normal and low-automated vehicles (L0, L1 and L2), higher levels of AV (L3 and L4), motorcycles and cyclists will be driving on the road together we call this mixed traffic.
-) Mixed traffic is expected to exist for several decades.
- > Mixed Traffic can create problems for traffic safety.
 - > Traffic is a social thing.
 - > Automated Vehicles are a technological thing.

> THANK YOU FOR YOUR ATTENTION

innovation for life