innovation for life

INDUSTRIAL HEAT PUMP DEV SIMON SPOELSTRA

li Na

0

H

-

ONDERZOEKSLOCATIE PETTEN (OLP)

DUTCH INSTITUTE FOR APPLIED RESEARCH THE NETHERLANDS

FOUR ROADMAPS ENERGY TRANSITION

Sustainable Subsurface

Home to the Geological Survey of the Netherlands. Levering knowledge of the subsurface for the energy transition.

Renewable Electricity

Developing and deploying expertise in wind and solar energy.

System Transition Enabling a just and socially inclusive energy transition.

CO₂ Neutral Industry

Developing services and technologies for the a sustainable industrial sector.

ENERGY TRANSITION ROADMAP: TOWARDS CO₂ NEUTRAL INDUSTRY

WHY FOCUS ON SUSTAINABLE INDUSTRIAL HEAT SYSTEM? Total energy demand - 2950 TWh/a Process heating demand - 1952 TWh/a Others - RES **Biomass** (0.4 %) RES (11 %) Electricity (3 %) Mix > 500°C **Distric heating** (8 %) (52 %) Others - fossil (13 %) Non-thermal (19 %) **Process** Coal (20 %) **Process heating** cooling (66 %) (3%) 200°C - 500°C Oil (11 %) Non-RES . (8 %) **Space** Space cooling heating 100°C - 200°C (1%) -(11 %) (36 %) < 100°C (11 %) Temperature **Fuel source**

R&D PROGRAM SIHS

	Reduce (energy use) F	Recovery & Reuse (energy) Process Optimisation & Integra	Replace (energy source)	Replace
Direct Use (T >200°C)		 HT Heat Recovery from Solids HT Heat Recovery from Fluids Dispatchable HT Heat Storage 	 Fuel diversification & Interchangeability Electric Heating Hybrid Solutions (electric and fuel use) 	
Indirect Use (T <200°C)	 Efficient Separation Technologies 	 Heat Pumps LT Heat Storage 	 New Technologies Replacing driving force Replacing the energy source 	

Reduce

Reuse

THERMAL SYSTEMS 14 FTE

) Knowledge

- Industrial heat pump technology
- Heat storage technology
- > Thermodynamics
- Heat & mass transfer
-) Modelling
 - EES, Modelica/TIL Suite
 - Matlab, Python
 - > Excel
-) Infrastructure

> Carnot lab

Mollier lab

INDUSTRIAL ENERGY USE

Heat 534 PJ

Electricity 137 PJ

Feedstock 517 PJ

Waste heat

TRANSITION TO CIRCULAR HEAT

- Structure of the existing energy system based around cheap and readily available fossil fuels
 - > Heat is cascaded once through the process
 - > Low temperature heat expended to environment
- > Lacking knowledge on heat pump integration
 - > Efficient, & flexible operation, contingency, etc.
- > Technology availability is limited
 - > Commercial availability to temperatures $90^{\circ}C \rightarrow 120^{\circ}C$
- > Economic constraints (CAPEX and OPEX)
 - > OPEX: Gas/Electricity price, CO₂ tax
 - > CAPEX: Heat pump, integration costs (1-10x heat pump)
- > Limited confidence in the technology

INDUSTRIAL HEAT PUMP MARKET TOP-DOWN APPROACH - NL

) Top-down approach

- > Energy use for heating chemical, refining, food, paper industry
- % of heat used < 100°C and between 100°C-200°C</p>
- > Assume source of waste heat is always available and of sufficient temperature

> Theoretical heat pump market Netherlands

- Current market 37 PJ or 1250 MW_{th}
- > Future market 155 PJ or 5400 MW_{th}

	< 100°C (PJ/a)	100°C - 200°C (PJ/a)
Refining	0	20
(Petro)chemical	0	87
Food	36	29
Paper	1	19
Total	37	155

INDUSTRIAL HEAT PUMP MARKET BOTTOM-UP APPROACH – EU-28

- > Heating/cooling profiles per production process
- > Distillation column database (chemicals + refining)
- Paper industry
- > Food (brewery, milk, potato processing, sugar)
- Typical plant capacities used to calculate typical heat pump capacities
- Production statistics from Eurostat
- Savings, current electricity system all renewables
 - Avoided fossil fuel use 371 724 PJ/a
 - CO₂-emission reduction 37 53 Mton/a
- Market paper can be found here

	Thermal power (GW)	# units	Process heat (PJ/a)
Refining	0.5	69	14
(Petro)chemical	9.1	1291	283
Food	5.5	1463	98
Paper	7.9	1351	245
Total	23.0	4174	641

IEA NET ZERO 2050 REPORT

Electricity accounts for around 40% of heat demand by 2030 and about 65% by 2050. For low- (<100 °C) and some medium- (100-400 °C) temperature heat, electrification includes an important role for heat pumps (accounting for about 30% of total heat demand in 2050). In the NZE, around 500 MW of heat pumps need to be installed every month over the next 30 years. Along with electrification, there are smaller roles for hydrogen and bioenergy for high-temperature heat (>400 °C), accounting for around 20% and around 15% respectively of total energy demand in 2050 (Figure 3.20). The rate of electrolyser capacity deployment is much lower than heavy industries, but the unit sizes will also be

The share of electricity in satisfying heat demand for light industries rises from less than 20% today to around 40% in 2030 and about 65% in 2050

Notes: Light industries excludes non-specified industrial energy consumption. Low/medium-temperature heat corresponds to 0-400 °C and high-temperature heat to >400 °C. Other heat sources includes solar thermal and geothermal heaters, as well as imported heat from the power and fuel transformation sector.

END-USERS CHARACTERISTICS

- > Well known end-user sub-sectors for heat pump integration
 - > Different products and processes \rightarrow same drivers, challenges w.r.t. IHPs
- > Food sector for first application of heat pumps in industry
 - Experience with technology

DRIVERS FOR HEAT PUMP INTEGRATION

- Positive business case, driven by:
 - > High energy prices (gas vs electricity)
 - Internalised and external price on CO₂
- Increased penetration of renewables in the electricity system
-) PEF 2.5 \rightarrow 2.1 \rightarrow 1.x
-) License to operate
- Social elements
 - Consumer awareness, dependency on Russian gas, etc.

BUSINESS CASE

10 MW (16 ton/hr) steam (150°C) required waste heat of 80°C available 8000 running hours

- > Steam boiler
 - Efficiency 90%
 - > 11 MW natural gas needed
 - Energy use 317 TJ/yr
 - Energy costs 12.7 M€/yr (@ 40 €/GJ)

- > Heat pump
 -) COP = 3
 - > 3.33 MW electricity needed
 - > Energy use 26.7 GWh
 - Energy costs 5.3 M€/yr (@ 200 €/MWh)

Yearly savings 7.4 M€/yr Assume investment = 1000 €/kW_{th}, including integration => 10 M€ Simple pay back time = 1.4 years

HEAT PUMP DEVELOPMENT GOALS

- **)** Temperature window
 - Waste heat < 100°C</p>
 - Process heat > 100°C, up to 200°C
- Performance targets
 - > COP > 50% of maximum (Carnot) efficiency
-) Unit size
 - > Standard sizes of 1, 2 and 5 MW
-) Cost targets
 - > < 500 €/kW_{th} (heat pump skid)

HEAT PUMP CLASSIFICATION

MECHANICAL VAPOUR RECOMPRESSION

- Direct compression of process medium to higher pressure & temperature
- > Applicability depending on process medium
- > No intermediate heat exchangers => high efficiency
- Compressors
 - Centrifugal compressor, large capacity, low pressure ratio
 - > Screw compressor, medium capacity, high pressure ratio
 - Multistage
- > Applied in food & chemical industry
- > Best known example: steam compression

REVERSE RANKINE CYCLES

- > Technology originating from refrigeration
- > Operating range determined by working medium
- > Multistage compression for high temperature lifts
- Refrigerants subdivided into synthetic and natural (CO₂, NH₃, hydrocarbons)
- Commercially available for sink temperatures up to 120 140°C
- Under development for sink temperatures > 140°C, using either hydrocarbons or newly developed synthetic refrigerants

TNO DEVELOPMENT ROADMAP

Temperature (°C)

TRL

HEAT PUMP CLASSIFICATION

TNO innovation for life

Q

- Use gas as working medium therewith providing flexibility in operating range
- > Working medium usually noble gas
- Stirling/thermoacoustic, Brayton cycles
- > Stirling heat pump commercially available
- Brayton heat pump (ECOP) entering market, no installation in operation

Tsink (°C) Tsource (°C)

THERMOACOUSTIC HEAT PUMP DEVELOPMENT ROADMAP

Temperature (°C)

) Large energy and CO_2 -emission reduction potential for industrial heat pumps

- > Multiple thermodynamic cycles available for heat pump applications.
- Wide range of operating temperatures already commercially available in the market, however
- > A temperature match does not necessarily indicate a match in capacity
- > Technically feasible does not mean economically feasible
- > Efficiencies are not included in the application area graphs and have large influence on economic feasibility
- > Individual companies may impose specific requirements with respect to working media on their sites
- Heat pumps fit in electrification trend and is a robust choice towards the future
- Developments are ongoing on increasing delivery temperature, performance, and cost reduction
- I Large market in NL and EU (23 GW * 1000 €/kW = 23 G€)

Read our (EU) white paper on relevance of industrial heat pumps for transition of industrial heat system https://publication/34636827/LyEUaZ/TNO-2020-heatpump.pdf

YOUR TIME AND ATTENTION

Simon Spoelstra

+31 6 5100 2828 simon.spoelstra@tno.nl

