Gravitational Waves A new window upon our Universe- Einstein Telescope

Typical effect on few kilometer scale: 0.000 000 000 000 000 000 1 meter

ETpathfinder visit, Friday 25 November 2022, Frank Linde KIVI (Koninklijk Instituut Van Ingenieurs)

Mindboggling accuracy

0.000 000 000 000 000 001 meter

To put 0.000 000 000 000 000 001 m in context nm-scale chip industry: 0.000 000 001 m

nm-scale i.e. single atomic layers is the magic word in the world of microelectronics

Overview

\rightarrow Curiosity-driven research

- How to detect gravitational waves?
- Revolutionary detections: 2015 \rightarrow
- Future: Einstein Telescope (ET)
- ETpathfinder: ET's R&D laboratory!
- ET in the Euregio Meuse-Rhine?
- Socio-economic impact of curiosity-driven research

Curiosity-driven research

Forces of Nature

compatible with relativity (Einstein)

— compatible with quantummechanics (Bohr, ...) –

verified to the extreme (CERN, Higgs, •••!)

veak nuclear

strong nuclear foro

gravitational waves!

ravity

radio, TV, mobile, computer, Remote control, biology, etc.

How does it work?

Forces of Nature

electro-magnetic force strong nuclear force weak nuclear force

How does it work?

What did we learn?

Where do we come from? – Where are we headed for?

Overview

- Curiosity-driven research
- \rightarrow How to detect gravitational waves?
 - Revolutionary detections: 2015 \rightarrow
 - Future: Einstein Telescope (ET)
 - ETpathfinder: ET's R&D laboratory!
 - ET in the Euregio Meuse-Rhine?
 - Socio-economic impact of curiosity-driven research

The concept: *laser-interferometer*

Real life: permanent struggle to fight disturbances:

Laser (in)stabilities, imperfect mirrors, (seismic, thermal, raindrops, tree-leaves, wind, ...) vibrations, scattered light, imperfect vacuüm, imperfecte alignment, quantum noise, etc. etc.

From the concept to reality

Today's facilities:

ALC: NO

started around 1990 few km long arms on surface (100) detections/year at room temperature in the USA, Europe & Japan

> Virgo near Pisa

LIGO - Hanford

4 km lange 'armen' Hanford, WA (VS)

P zer

LIGO - Livingston

4 km lange 'armen' Livingston, LA (VS)

Worldwide network

How to reach down to 10⁻¹⁸ meters?

Michelson interferometer

For simplicity: assume laser light storage time < GW period

$$E_{out} = rac{1}{2} igg(e^{-i\phi_A} - e^{-i\phi_B} igg) E_{in} \ = igg[ie^{-i(\phi_A + \phi_B)/2} \sinigg(rac{\phi_A - \phi_B}{2} igg) igg] E_{in}$$

 $P_{out} = E_{out}E_{out}^* = P_{in}\sin^2\left(\frac{\phi_A - \phi_B}{2}\right) = \left[1 - \cos\left(\phi_A - \phi_B\right)\right]\frac{P_{in}}{2}$ $= \left[1 - \cos\left(\phi_A - \phi_B\right)\right]\frac{P_{in}}{2}$ 16

How to reach down to 10^{-18} meters?

Michelson interferometer

Need: very stable laser (10⁻⁸)! Operate close to 'dark fringe' (not @ 'dark fringe': no signal •••)

$$P_{out} = \frac{P_{in}}{2} \left(1 - \cos(\phi_0 + \frac{8\pi L}{\lambda}h) \right)$$

$$\Rightarrow - \begin{bmatrix} laser \\ power \\ power \\ \Delta P_{out} \sim \frac{\Delta P_{in}}{2} (1 - \cos\phi_0) \\ strain \\ \Delta h \\ \Delta h \\ \sim P_{in} \frac{4\pi L}{\lambda} \sin\phi_0 \\$$

$$\Rightarrow \Delta h \sim \frac{\Delta P_{in}}{P_{in}} \times \frac{\lambda}{8\pi L} \times \frac{1 - \cos\phi_0}{\sin\phi_0} \\$$

$$\geq 10^{-19} \times \frac{1 - \cos\phi_0}{\sin\phi_0}$$

How to reduce noise? E.g. (seismic) vibrations

Elaborate multiple pendula attenuators

Just an example. Lots of other (quantum) tricks which I fail to explain i.e. very elaborate control systems!

Elaborate multiple pendula attenuators

Overview

- Curiosity-driven research
- How to detect gravitational waves?
- \rightarrow Revolutionary detections: 2015 \rightarrow
 - Future: Einstein Telescope (ET)
 - ETpathfinder: ET's R&D laboratory!
 - ET in the Euregio Meuse-Rhine?
 - Socio-economic impact of curiosity-driven research

1st detection SEP/2015: *black holes*

1st detection SEP/2015: *black holes*

In a nutshell:

1.4 billion years ago two black holes ($29 \times M_{Sun} \& 36 \times M_{Sun}$) merged into a single $62 \times M_{Sun}$ black hole

1st detection SEP/2015: *black holes*

Reality: lots of data analysis to extract the minute imprint of a gravitational wave from thd continuous data stream (and to guarantee it isn't an art-effect!)

CON 100751-20200 1706,0419

Revolutionary one AUG/2017: <u>neutron stars</u>

Revolutionary one AUG/2017: *neutron stars*

Revolutionary one AUG/2017: <u>neutron stars</u>

predicted: 1916 ··· 1st detection: 2015 ··· Nobelprize: 2017 ··· now: ~100 detections!

Overview

- Curiosity-driven research
- How to detect gravitational waves?
- Revolutionary detections: 2015 \rightarrow
- → Future: *Einstein Telescope (ET)*
 - ETpathfinder: ET's R&D laboratory!
 - ET in the Euregio Meuse-Rhine?
 - Socio-economic impact of curiosity-driven research

Exploring our <u>entire</u> Universe?

1st ideas in 2004 10 km long arms @ 250 m deep cold: 250 °C below zero European

s >100,000 detections/year *zero* from entire Universe!

10 km

Costs:

ullet

- ~ 200 M€ R&D/preparations
- ~ ~ 1,700 M€ realisation
 - ~ 40 M€/year exploitation

(plan: ~50 years)

Start in 2035-2040?

Higher sensitivity: from 3-4 km to 10 km

easiest way to improve sensitivity: increase length (think about LISA)

Einstein Telescope:

 $h \equiv \frac{\Delta L}{L}$

- 10 km (ET) instead of 3-4 km (Virgo/LIGO)
- 3×2 interferometers (3 LF, 3 HF)

Cosmic Explorer (USA): 20-40 km L? *Do we want to repeat Virgo/LIGO experience?*

Higher sensitivity: from 20 °C to -250 °C

Cryogenic (Si) mirrors

(crystalline) silicon

No thermal expansion at very low temperatures ⇒ Excellent in view of mirror deformations due to non-uniform heating by laser beams

Very high thermal conductivity at 10-80 K range temperatures ⇒ Excellent in view of mirror deformations due to non-uniform heating by laser beams

Higher sensitivity: underground

Vibration Attenuation

trillingen makkelijk te dempen \rightarrow no problem

zwaartekrachtfluctuaties: niet af te schermen=GGN → rustige omgeving en/of actieve GGN correctie

Higher sensitivity: more things just 'better'

Controls Quantum tricks (like squeezing) Lasers Photodiodes Attenuators (passive + active) Actuators Vacuum Etc.

The real issues to beat/control:

- scattered light i.e. imperfections
- noise (pumps, ventilation, cryogenic coolers, etc.) we make!

More detections: *higher sensitivity & larger bandwidth*

Einstein Telescope

Einstein Telescope planning

Huge boost for EMR/NL: Dutch Nationaal Groeifonds

Het Nationaal Groeifonds Resultaten tweede ronde

97

Onderzoek.	ontwikkelin	ig en Innovat	ie
------------	-------------	---------------	----

De revolutie van de zelfdenkende moleculaire systemen

Einstein Telescope	42 & (870)
NX IGEN HIGH LECH	450
Photondelta	471
Cellulaire agricultuur	60
CropXR	43
Groeiplan Watertechnologie	(135)
NL2120, het groene verdien- vermogen van Nederland	(110)
Werklandschappen van de toekomst	(26)
Biotech Booster	246
Oncode-PACT	325
PharmaNL	80
Toekomstbestendige leefomgeving	(100)
Groenvermogen II	500
Nieuwe Warmte Nu!	200
Digitaal Ecosysteem Mobiliteit en Smart City	(85)
Digitale Infrastructuur en Logistiek	51
Luchtvaart in Transitie	383
Zero-emissie binnenvaart batterij-elektrisch	50

Kennisontwikkeling

1	Digitaal Onderwijs Goed Geregeld	34
1	Digitaliseringsimpuls onderwijs NL	560
1	Impuls Open Leermateriaal	78
(Ontwikkelkracht	332
(Collectief laagopgeleiden en laaggeletterden	51
1	Nationale LLO Katalysator	392
0	Opschaling publiek private samenwerking in het beroepsonderwijs	210

nfrastructuur		
ail Gent-Terneuzen		105
	Totaal € 105 mln	0

Toegekend: € 1.317 miljoen Voorwaardelijk toegekend: € 3.663 miljoen Gereserveerd:

€ 1.326 miljoen € 6.305 miljoen Totaal NGF:

€ 4.544 mlr

Welvaart van morgen begint vandaag

Overview

- Curiosity-driven research
- How to detect gravitational waves?
- Revolutionary detections: 2015 \rightarrow
- Future: Einstein Telescope (ET)
- → ETpathfinder: *ET's R&D laboratory*!
 - ET in the Euregio Meuse-Rhine?
 - Socio-economic impact of curiosity-driven research

To develop ET's innovations: <u>R&D laboratory</u>

ETpathfinder (14,5 M€)

- cold Si mirrors (@ -250 °C)
- control technology
- new noise suppression tricks
- New concepts
- ...

In \leq 3 years (2019-2022): ~ 14 M€ spent huge cleanroom built vacuum installed lots of optics lots of computing lots of design work attenuators in progress

ETpathfinder: started as B-D-NL project → worldwide R&D laboratory

Overview

- Curiosity-driven research
- How to detect gravitational waves?
- Revolutionary detections: 2015 \rightarrow
- Future: Einstein Telescope (ET)
- ETpathfinder: ET's R&D laboratory!
- \rightarrow ET in the Euregio Meuse-Rhine?
 - Socio-economic impact of curiosity-driven research

ET key requirement: *low-noise environment*

The challenge: *build ET cost-efficiently!*

Huge volume (few million m³) to be excavated. Requires detailed knowledge of (hydro)geology.

- *30-50 km length of tunnels*
- 10-24 (large) caverns
- 1-3 large access shafts

Issues: water, rock quality, costs, sustainability, permitting, nuisance during construction, •••

Civil engineering: the challenges

- Less!
- Less wid
- Less hig $(\mathsf{L} \leftrightarrow \Delta)$

💥 Implenia

Scope of work for the Civil Engineering Scan for **Einstein Telescope**

Prof. Dr Frank Linde Nikhef Sciencepark 105 1098 XG Amsterdam Date / Versio 30. September 2019 / 00

Client

Implenia Österreich GmbH - Tunnelling & Civil Engineering Innsbrucker Bundesstraße 67, AT-5020 Salzburg, T +43 662 21 66 21, F +43 662 21 66 21 99

Firmenbuch-Nr.: FN 245047 p, Landesgericht Salzburg, UID: ATU 57972714

ing Scan for Einstein Telescope: Operational, Time and Cost Assessment	
ent	
Project description and general assessment of th	e scope of work4
Project-related documents, Standards and Literat	ture5
Project-related documents	
Standards	
Literature	
The basic layout of the underground scheme	6
Limitations of the report	
Premises and presumptions for the operational a	nd cost analyses10
Geological, geomechanical and hydrogeological presu	mptions 10
Underlying geomechanical conditions of the project ar	ea and implications on the construction 10
Underlying hydrogeological conditions of the project a	rea and implications on the construction 10
Specific recommendations for subsequent geomechan	ical design and cost implications11
Excavation Concept	
Excavation Concept for Access of Underground Labora	tory
Determination of Construction Method for Shaft Sinkir	ng
Excavation method for the access shafts	
Assessment of Shaft Excavation Diameter	
Excavation Concept of Underground Structures within	the Access Shaft areas18
Assessment of Excavation Method	
Clearance Profile of Caverns, Revision Tunnel and Dew	vatering Tunnel
Excavation Concept of Dewatering Shaft/ Borehole	
Excavation Concept of Gravitational Detection Tunnels	
Assessment of Tunnel Boring Machine type and	excavation diameter for excavation of
"Gravitation Wave Detection Tunnel."	
Ventilation concept	
Safety concept	
Proposal for preliminary logistical concepts and o	construction time27
Preliminary assessment of construction costs	
Identification of main project risks and specificat	ion of mitigation measures
Summary	

🔆 Implenia

Implenia Österreich GmbH Tunnelling & Civil Engineering

Civil Engineer

Table of conte

2

3 4

5 5.1

5.1.1

5.1.2

5.1.3

6

6.1

6.1.1

6.1.2

6.1.3

6.2

6.2.1

6.2.2

6.3

6.4

10

11

12

6.4.1

2.1.1

2.1.2 2.1.3

page 2

Siting ET in the Euregio Meuse-Rhine

1st subsidy: Interreg EMR 'E-TEST'

E-TEST

The Einstein Telescope will open a new window on the Universe through the observation of gravitational waves. Its infrastructure will be buried 300 meter below the surface to reduce human-, wind- and ground-induced vibrations and movements. The interreg project E-TEST is a very important. step of the Einstein Telescope, as it will be a proof of concept, both on the prototype side and on the geological side. E-TEST will build a prototype - a large suspended mirror at cryogenic temperature (10 Kelvin) - to validate the telescope's technology. E-TEST will also run an underground study to map and model the geology of the Euregio Meuse-Rhine. This will allow to define the optimal design and location of the future Einstein Telescope. This project is a major scientific breakthrough but will also have a significant economic Impact on SMEs in the Euregio Meuse-Rhine.

www.interregemr.eu

At interreg Euregio Meuse-Rhine, we fund projects where partners work together across borders. In 2014-2020, we invest EUR 96 million from the European Regional Development Fund in our region.

We are a collaboration between 13 regions from we develop shared solutions to common challenges.

Belgium, Germany and The Netherlands. Together, This gives interreg its own, distinct spirit of cooperation: across regions and across borders.

provincie limburg 🧋

To map the **EMR** geology

- Hydrology
- **Boreholes** \bigcirc
- Seismic \bigcirc
- ERT
- EM

gravimetric

40 km stretch active seismic campaign – Sep/22

40 km stretch active seismic campaign – Sep/22

Strong community - political support NL, B&D

Einstein Telescope

The Einstein Telescope?

The Einstein Telescope is an advanced gravitational-wave observatory, currently in the planning stage. The border region between the Netherlands, Belgium and Germany is being considered as a possible location. This is because of its tranquillity, stable ground and strong ecosystem of scientific institutions and high-tech companies.

Will this new centre for research into the distant universe be located in the region? Scientists, companies and governments in all three countries are exploring the possibilities together.

When stars collide or black holes form, space vibrates

Gravitational waves contain information about the most extreme events in the universe, from the nature of black holes and neutron stars to the first moments after the Big Bang. Thanks to these waves, we can study the cosmos as never before.

Lots of institutes involved already

Highlights: NL/'Groeifonds' & D/'DZA'

Strong community - political support NL, в & D

NL:

42 M€ to prepare bid to host ET in the EMR

870 M€ if ET will be build in the EMR

Lots of institutes involved already

Highlights: NL/'Groeifonds' & D/'DZA'

Overview

- Curiosity-driven research
- How to detect gravitational waves?
- Revolutionary detections: 2015 \rightarrow
- Future: Einstein Telescope (ET)
- ETpathfinder: ET's R&D laboratory!
- ET in the Euregio Meuse-Rhine?
- → Socio-economic impact of curiosity-driven research

curiosity-driven research

Past achievements: *future's best guarantee!*

$\partial_{\nu}F^{\mu\nu}=\mu_0J^{\mu}$	1865: Maxwell	Radio, TV, radar, mobile phone, microwave, remote control, etc. = most of your life!
E = hv	1900: Planck	Quantum mechanics i.e. chips, computers, LEDs, lasers, etc. Quantum computing?
$E = mc^2$	1905: Einstein	Nuclear power, nuclear medicine, etc.
$G_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}$	1915: Einstein	GPS!
$i\hbar\gamma^{\mu}\partial_{\mu}\psi=mc\psi$	1928: Dirac	Antimatter. Science fiction? PET scanner!
WWW	1989: Berners-Lee	Can you imagine life without it?

Physics-based industry in Europe

€4.40 TRILLION

Revenue of the physics-based industries within Europe has exceeded €4.40 trillion in every year of the period 2011-2016

€1.45 TRILLION

The GVA of the physics-based sector within Europe has exceeded €1.45 trillion in each year of the period 2011-2016

16%

The physics-based industries typically accounts for 16% of the total turnover of the EU28 business economy

Physics-based industries contributes significantly to the economies of European countries and to the European economy as a whole

of the EU28 business economy, which is more than the gross turnover contribution of the entire retail sector. [Figure 2a] shows the percentage distribution of physics-based industries turnover between the different countries of Europe for the year 2016. The major economies of Western Europe clearly dominate. Similar geographical distributions are observed for all other years in the period of study.

Figure 2a: percentage distribution of physics-based industries turnover in different countries of Europe (2016)

TURNOVER BY COUNTRY, MILLIONS € SINCE 2011

Real impact: next generation! 17 million jobs in 2014

And they go anywhere:

- Academia
- Industry
- Consulting
- Journalism
- Finance
- Politics

•••

IT'S THE PERFECT DAY TO MAKE A KILLING

Thank you!

ET specifications

	ET-HF	ET-LF	
Approximate frequency range	$1010^4\mathrm{Hz}$	$1-250\mathrm{Hz}$	
Detection scheme	DC readout	DC readout	
Input power (after IMC)	$500\mathrm{W}$	$3\mathrm{W}$	
Laser wavelength	$1064\mathrm{nm}$	$1550\mathrm{nm}$	
Beam shape	LG_{33}	TEM_{00}	
ARM CAVITIES			
Arm length	$10\mathrm{km}$	10 km	
Opening angle	60 °	60 °	
Arm power	$3\mathrm{MW}$	$18\mathrm{kW}$	
Temperature	$290\mathrm{K}$	$10\mathrm{K}$	
Mirror material	fused silica	silicon	
Mirror diameter	$62\mathrm{cm}$	$>45\mathrm{cm}$	
Mirror thickness	$30\mathrm{cm}$	m about~50cm	
Mirror mass	$200\mathrm{kg}$	$211\mathrm{kg}$	
Beam radius (at mirror)	$7.2\mathrm{cm}$	$9.0\mathrm{cm}$	
Beam waist (symmetric cavity)	$2.51\mathrm{cm}$	$2.9\mathrm{cm}$	
RoC (symmetric cavity)	$5690\mathrm{m}$	$5580\mathrm{m}$	
Scatter loss per surface	$37.5\mathrm{ppm}$	$37.5\mathrm{ppm}$	
Finesse	880	880	
Reflective coating ITM	tantala/silica	tantala/silica	
	8 $\lambda/4$ doublets	9 $\lambda/4$ doublets	
Reflective coating ETM	tantala/silica	tantala/silica	
	17 $\lambda/4$ doublets	18 $\lambda/4$ doublets	
Transmission ITM	$7000\mathrm{ppm}$	$7000\mathrm{ppm}$	
Transmission ETM	6 ppm	$6\mathrm{ppm}$	

	ET-HF	ET-LF		
CENTRAL INTERFEROMETER				
SR-phase	tuned (0.0)	detuned (0.6)		
Focussing element	in or near the ITM	in or near the ITM		
	focal length $= 303 \mathrm{m}$	focal length $= 303 \mathrm{m}$		
Distance ITM–BS	$300\mathrm{m}$	$300\mathrm{m}$		
Distance BS–MPR	$10\mathrm{m}$	$10\mathrm{m}$		
Recycling cavity length	$310\mathrm{m}$	$310\mathrm{m}$		
Beam size on BS	$4.7\mathrm{mm}$	$6\mathrm{mm}$		
Beam size on MPR	$2.7\mathrm{mm}$	$3.4\mathrm{mm}$		
Recycling gain	21.6	21.6		
Recycling cavity free spectral range	$484\mathrm{kHz}$	$484\mathrm{kHz}$		
Round-trip Guoy phase	10.5 °	9.6 °		
mode separation frequency	28 kHz	26 kHz		
Recycling cavity temperature	room temperature	room temperature		
Beam splitter material	fused silica	fused silica		
Transmission PRM	4.6%	4.6%		
Transmission SRM	10%	20%		
FILTER CAVITIES				
Quantum noise suppression	frequency-dependent squeezing	frequency-dependent squeezing		
Filter cavities	$1 \times 300 \mathrm{m}$	$2 \times 10 \mathrm{km}$		
Half-bandwidth	$5.7\mathrm{Hz}$	$5.7\mathrm{Hz}$ and $1.5\mathrm{Hz}$		
Detuning	$25.4\mathrm{Hz}$	$25.4\mathrm{Hz}$ and $6.6\mathrm{Hz}$		
Round-trip loss	$75\mathrm{ppm}$	75 ppm		