Non-terrestrial 6G activities at CWTe

KIVI EVENT ON "SATELLITE COMMUNICATIONS FOR 5G AND BEYOND" AT SPACE EXPO NOORDWIJK

Dr. Ulf Johannsen, Director CWTe

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Centre for Wireless Technology (CWTe)

Nine departments

Mathematics & Computer Science

Applied Physics

Chemical Engineering

Mechanical Engineering

Electrical Engineering

Biomedical Engineering

Built Environment

Industrial Design

Industrial Eng. & Innovation Sciences

TU/e

TU/e Corporate Presentation

Department of Electrical Engineering

1200 BSc and MSc students 80 scientific staff members

>250 PhD students

Intense cooperation with High-tech industry and research institutes (e.g. Philips, NXP, ASML, DAF, VDL, TNO, ASTRON, Prodrive,)

Center for Wireless Technology Eindhoven – CWTe

TECHNOLOGY

EINDHOVEN

0

CWTe Overview 4

CWTe Research Programs

TECHNOLOGY

EINDHOVEN

5 CWTe Overview

CWTe Labs

- Co-located and integrated laboratories, occupying about 700m²
- Labs for all different sub-disciplines of wireless systems
- Dedicated system integration lab
- Fully shielded
- Anechoic chambers
- Reverberation chambers
- On-wafer, PCB-level and system-level characterization

Contents

- History Why CWTe is working on SatCom
- Groeifonds project 6G Future Network Services
- EU project ANTERRA
- First results

Key outcomes

6G antenna front-end development of NXP + Ericsson + TU/e support: ٠

TU/e spin-off: •

TSMC offers access to 16nm and 7nm process for large discount •

• 2024 - 2030:

Contents

- History Why CWTe is working on SatCom
- Groeifonds project 6G Future Network Services
- EU project ANTERRA
- First results

P

6G Future Network Services – National Growths Fund

AMBITION: BUILDING A STRATEGIC AND LEADING POSITION FOR THE DEVELOPMENT AND APPLICATION OF 6G NETWORKS

PL2: Intelligent networks

TU/e wytesty o

🚵 kpn

vodafone () (Z)GGG

almende

PL3: Leading applications

PHILIPS Ovialis Gomibo

TUDelft

Schiphol

kon robin

UNIVERSITY OF TWENTE.

ğ

become a leader in the development of intelligent components and networks, and their application

in most important sectors of Dutch economy

NVIDIA

amsix

CORDIS

G-wireless"

Ruber ASML

- 203M€ Subsidies National Growth Fund
- 112M€ Co-Financing by private partners
- 60 partners
 - Universities, research institutes, government, industry, end-users
- Program includes 90Mio€ Open Calls •
- Start of program expected Q1 2024

6G Future Network Services – NL Strengths

TU/e asked to lead "Intelligent Components" work package

TU/e

WTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

6G SatCom: Potential 6G FNS partners

Vodafone KPN Ericsson Nokia Viasat Antenna Company NXP Ampleon Altum RF TNO

e

Contents

- History Why CWTe is working on SatCom
- Groeifonds project 6G Future Network Services
- EU project ANTERRA
- First results

0

What is 6G? – Mobile Communications Timeline

Non-terrestrial Network Types

CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

Role of Satellite Communication in 6G

CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

TU/e

Direct 6G Connectivity to mobile phones

- Dual band: L+S-band depending on region
- Up to 10s of thousands of beams
- Circular polarization for alignment

Main challenges:

- Array design: Low-profile, wide-band, wide-scanning, compact
- Tx-to-Rx self-interference
- GNSS / RA interference compliance

Example application: Autonomous shipping

Example application: Autonomous shipping

GRONINGEN SEAPORTS

Source: Henk Zwenksloot CWTe Research Retreat 2019

CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

21

Contents

- History Why CWTe is working on SatCom
- Groeifonds project 6G Future Network Services
- EU project ANTERRA
- First results

0

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (1/8)

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (2/8)

TU/e

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (3/8)

CENTER FOR WIRELESS

INDHOVEN

25

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (4/8)

CWTE CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

e

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (5/8)

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (6/8)

CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (7/8)

CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

ſU/e

Customizable Phased Array Antenna based on Domino Tiles for Satcom Applications (8/8)

CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

Direct Matching of HPA and Antenna (1/5)

31 M. de Kok, et al, "Modeling Integrated Antennas and Unisolated High-Power Amplifiers in Infinite Scanning Arrays," In 2023 European Microwave Conference CWTe CENTER FOR WIRELESS TECHNOLOGY EINDHOVEN

Direct Matching of HPA and Antenna (2/5)

M. de Kok, et al, "Modeling Integrated Antennas and Unisolated High-Power Amplifiers in Infinite Scanning Arrays," In 2023 European Microwave Conference

32

Direct Matching of HPA and Antenna (3/5)

M. de Kok, et al, "Modeling Integrated Antennas and Unisolated High-Power Amplifiers in Infinite Scanning Arrays," In 2023 European Microwave Conference

Direct Matching of HPA and Antenna (4/5)

Fig. 6. Varying values of Γ_{in} due to scanning to angle (θ_0, ϕ_0) within 75° from broadside, projected onto interpolated load-pull contours.

M. de Kok, et al, "Modeling Integrated Antennas and Unisolated High-Power Amplifiers in Infinite Scanning Arrays," In 2023 European Microwave Conference

34

Direct Matching of HPA and Antenna (5/5)

Fig. 7. Model results for a 30 GHz 50 Ω stacked-patch element in an infinite array, connected to an eight-transistor GaN HPA with a synthesized PCN, a single on-chip L-shaped MNW, and a 500 μ m bondwire. In (a) and (b), the total PAE and P_{ant} values are mapped to their respective scan angles (θ_0, ϕ_0) within 75° from broadside. The total mismatch and network losses between the Γ_{in} and Γ_{ant} interfaces are plotted for each scan angle in (c).

CENTER FOR WIRELESS

TECHNOLOGY

EINDHOVEN

TU/e

35

M. de Kok, et al, "Modeling Integrated Antennas and Unisolated High-Power Amplifiers in Infinite Scanning Arrays," In 2023 European Microwave Conference

Thank You!

