

Biorefinery of Agri-Food Residues: Versatile Galactaric Acid from Sugar Beet Pulp

Webinar NPT biobased green chemistry: flagship projects and scale-ups

Wouter Huijgen 12-3-2024

Outline Presentation

- Meet Cosun
- Sugar Beet Pulp
- Galactaric Acid
- Discussion & Questions

Production Sites

and research centers

Sugar Beet Pulp

Sugar Process

Development Dutch Sugar Industry

- A story of scale-up and efficiency increase
- Production 2023: 1.2 Mton sugar from 7.4 Mton sugar beets

Production of ~1 Mta sugar	1985	2023
Companies	2	1
Plants	10	2
Average plant capacity (ton beet/day)	< 8.000	~30.000
Employees	2500	800
Area (ha)	125.000	75.000

Reduction energy use per kg sugar

Sugar Beet Pulp

Large residual biomass stream:

• Cosun: ~1 Mton/yr ton of pulp (Europe: ~13 Mton/yr).

Mainly residual primary cell walls:

- Cellulose (~25wt%)
- Hemicellulose (arabinans) (~20wt%)
- Pectin (polygalacturonic acid) (~20wt%)

Uses:

- Today: cattle feed & anaerobic digestion (green gas)
- Emerging: packaging & upcycling for food
- Next: multi-product biorefinery sugar beet pulp for biobased economy
 - Example today: galactaric acid

PhD thesis M Leijdekkers (WUR, 2015)

Galactaric Acid: Unique Molecule

- Galactaric acid: an aldaric acid (common name: mucic acid)
- Readily biodegradable & non-toxic

Galactaric acid

- Galactaric acid structure similar to glucaric acid, but chiral difference
 - \rightarrow big difference in physical chemical properties by hydrogen bonds

- Symmetric, not optically active
- Insoluble in water at low pH
- Melting point 220°C

Glucaric acid

- 32% soluble in water
- Melting point 130°C

Galactaric Acid: Versatile Molecule

Personal care (drop in)

Pharma (drop in)

Examples Potential Markets

Coatings

Metal treatment

Home care

Corrosion Inhibitor

- Galactaric acid acts as corrosion inhibitor in various applications.
- Mode of action includes thin film former.
- Main market driver: future phasing out of conventional products \rightarrow opportunity for biobased!

Aluminium staining at high pH

Chelating Agent

- Galactaric acid: excellent complexing agent for metal ions
- Complexing agents used in various markets, both food & non-food → focus: home and personal care applications
- Market drivers: demand for natural products & phasing out of conventional complexing agents (e.g., EDTA, phosphates)

Processes to Galactaric Acid

Chemocatalytic Oxidation to Galactaric Acid

- Oxidation galacturonic acid to galactaric acid key proprietary step.
- Route 1: Chemocatalytic oxidation
 - Mild conditions (water, pH 9, 50-60 °C, oxygen/enriched air)
 - High yield: ~90 %
 - Highly selectivity: up to 94%
 - Purification D-galacturonic acid required

- **15** F. van der Klis et al. Waste not, want not: Mild and selective catalytic oxidation of uronic acids. ChemSusChem 2013, 6, 1640–45.
 - F. van der Klis et al. From batch to continuous: Au catalysed oxidation of GalUA in a packed bed plug-flow reactor under alkaline conditions.

Enzymatic Oxidation: D-Galacturonic Acid Oxidase

Docked galacturonic acid active site of URAO3.

Cosun

- Route 2: Enzymatic Oxidation
- URAO_{Cs} isolated from citrus peels (*Citrus sinensis*) and characterized
- URAO successfully expressed in *P. pastoris*
- High selectivity for uronic acids in complex mixtures
- M. Fraaije, N.Loncar et al., ChemCatChem 2023, e202300847

Thank you for your attention!

