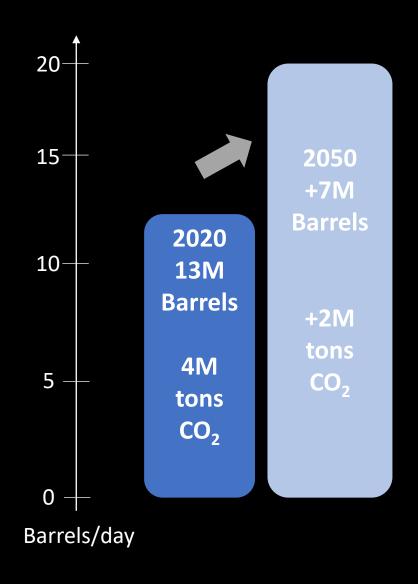

A sustainable oil company Creating more value by doing less.

Dr. Panos Kouris, Co-founder & CTO

panos@vertoro.com

Problem 1
Need for
sustainable
carbon

- In 2022 average temperature in EU > 2 degrees Celsius
 - Atmospheric Greenhouse Gases continue to increase
- CO2 & CH4 main drivers for climate change

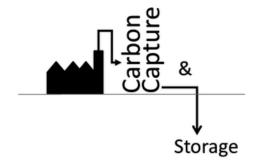


10-2050 (+) 2-10 M barrels 2020 5 M barrels CO₂ 1billion tones CO₂ 0 + Barrels/day

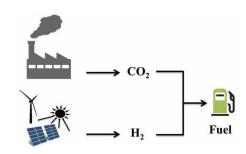
Maritime Sector

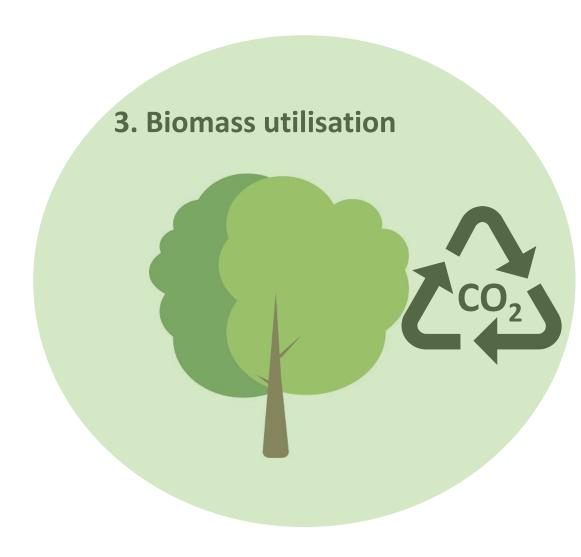
obvious CO₂

Petrochemicals

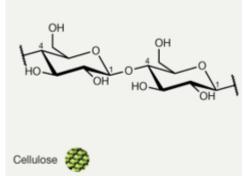


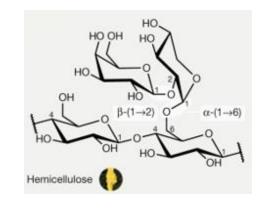
hidden CO₂


Solutions for circular economy

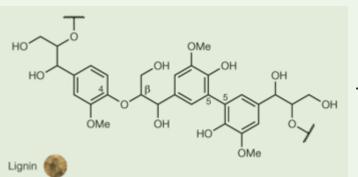


1. Carbon capture & storage




2. Carbon capture & utilization

How can 2G biomass replace petroleum?

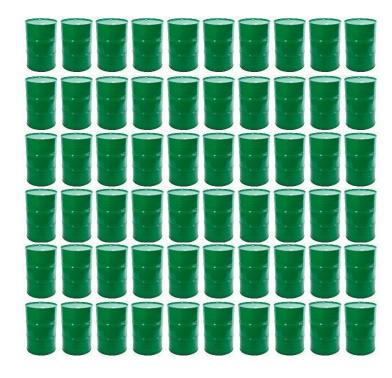


Biobased plastics

Lignocellulosic Biomass

Treated always as
Low-value side solid stream

Is Biomass enough?

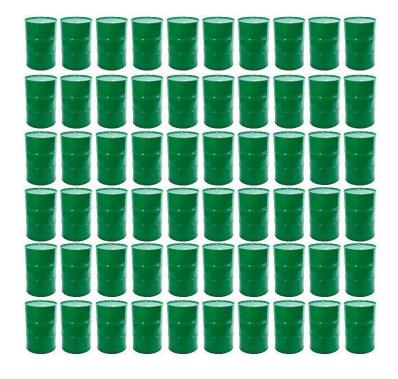

Fossil oil

5 billion tons / y

Extracted from Mother nature

Lignocellulosic Biomass

180 billion tons / y *

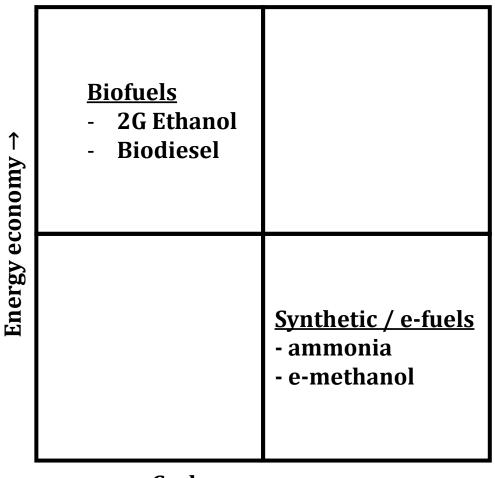

<u>Produced</u> by Mother nature

Is Biomass enough?

Agricultural crops

25 billion tons / y

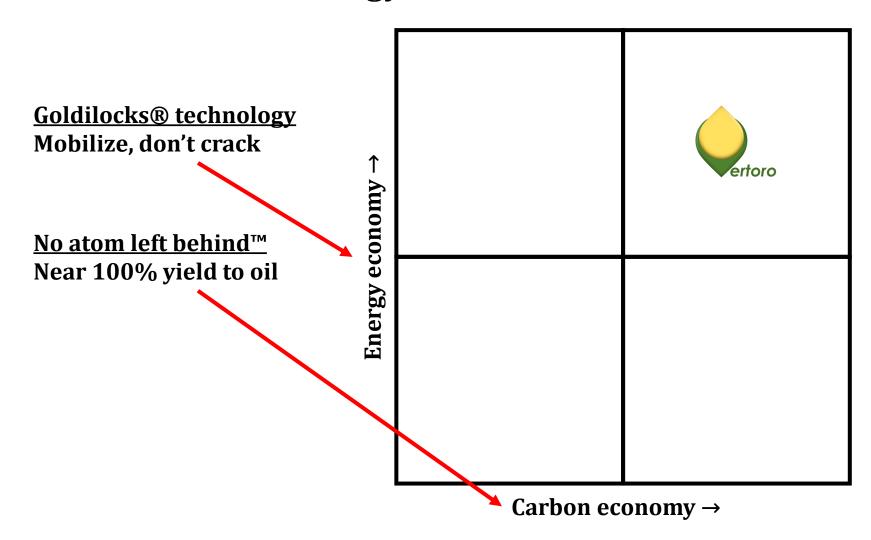
180 billion tons / y


Available

Produced by Mother nature

Problem 2

Sustainable energy carriers have poor resource efficiency



Carbon economy →

Solution

Sustainable energy carriers with <u>excellent resource efficiency</u>

Decarbonization 2.0 – Resource management

Mission: Creating future-proof low carbon solutions, produced with minimal consumption of precious resources (biomass, land, energy, metals, ...)

Our mission At Vertoro, we believe in Decarbonization 2.0, which holds that creating affordable low carbon solutions carbon solutions, such as electricity, hydrogen, does not go far enough. These solutions should biomass, and precious metals. Though acceptable furthermore be produced with maximal resource today, undue consumption of precious resources is

efficiency.

not future proof.

What we do. Produce patented bio-based crude oils from sustainably sourced 2G biomass residues/wastes. Revolutionize biorefinery approach.

Vision. Become both the world's first sustainable oil major.

Solution

Cheap sustainable crude oil **platforms**

Lignocellulose

Cellulose

	Espresso	Recipe #1	Recipe #2	Recipe #3
Solvent	Water	(m)ethanol	(m)ethanol + dilute acid	Water + dilute acid
Biomass	Coffee beans	Lignin (ex-2G ethanol or expaper & pulp plant)	Lignocellulose (saw dust, stover, bagasse)	Cellulose (own process, paper sludge, beet pulp, EOL textiles)
Temperature	90 °C	200 °C	180 °C	150 °C
Liquid product	Espresso	Crude lignin oil (CLO) (~50%)	Crude lignin oil (CLO) (~50%)	Crude sugar oil (CSO) (>95%)
Solid product	Coffee residue	"Biochar" (~50%)	Cellulose (~50%)	Ash → fertilizer (<5%)

Our 1st grand challenge: Transportation International shipping & Aviation

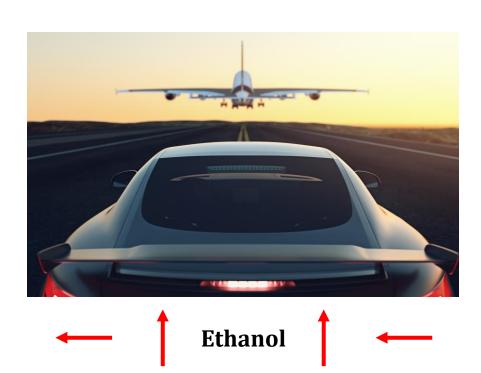
3% global CO2 emissions

The maritime sector consumes **300 million tons of fuel oil per year** and emits **3%** of global GHG emissions.

2.5% global CO2 emissions

Crude Lignin Oil (CLO®)
Crude Sugar Oil (CSO®)
Initial focus

CSO®-derived 2G ethanol & CO2 for Alcohol-to-Jet & e-Kerosene


MarketKiller **apps**, traction & key performance indicators

Crude lignin oil (CLO®)

Drop-in for <u>new 2-stroke dual-fuel</u> (m)ethanol vessels (e.g., Maersk)

Key performance indicators: Compliance (e.g., RED) & \$/GJ

Crude sugar oil (CSO®)

Drop-in via emulsification with HFO for <u>existing</u> vessels (e.g., MSC via our partner Quadrise)

Large, low entry barriers, harsh new legislation

Crude lignin oil (CLO)

Drop-in for <u>new dual-</u> <u>fuel</u> vessels (Maersk, CMA, Cosco)

FuelEU Maritime (part of EU Fit for 55 package)

Crude sugar oil (CSO)

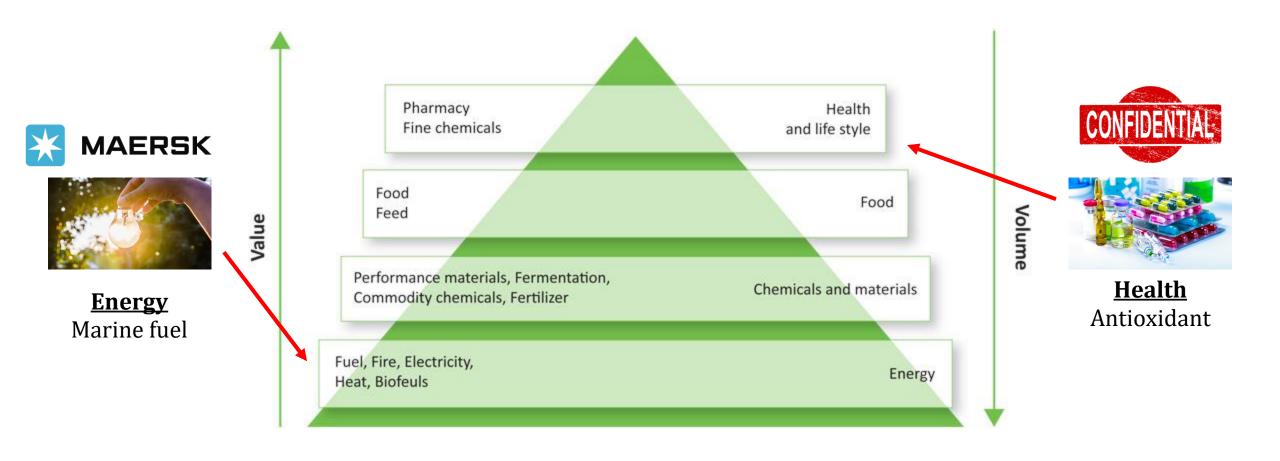
Drop-in (via emulsification with HFO) for <u>existing</u> vessels)

Launching market - Container Shipping

https://www.alcottglobal.com/top-10-worlds-largest-container-shipping-companies/?utm_source=rss&utm_medium=rss&utm_campaign=top-10-worlds-largest-container-shipping-companies

Rationale

- No <u>viable</u> alternatives to liquid fuels
- Engines can digest pretty much anything
- 100% green premium →
 1% increase consumer prices



		Fuel	Key advantages	Key limitations/risks
© Shel	0	Biodiesel e.g., Used Cooking Oil Methyl Ester (UCOME)	 Can be used as drop-in fuel in existing vessels and engines 	 Limited availability of biomass feedstock a challenge to scalability Price pressure due to high demand from competing industries
METHANEX	600	Methanol (bio-methanol)	 Already in operation as marine fuel Engine is available Liquid at normal conditions, well-known handling 	 Bio-methanol: Production at scale is challenged by uncertainty over availability of biomass E-methanol: Availability of biogenic CO₂ source at production site, cost and maturity of electrolyser technology
ertoro		Lignin fuels A new biofuel based on biomass residue (lignin) and alcohols (methanol or ethanol)	 Lignin fuels are potentially the most price-competitive net zero fuel with the lowest price estimate almost on a par with fossil fuels 	 In development stage, production needs to be scaled up to create a new value chain and infrastructure for supply Engine requirements would be the same as for methanol, but additional handling of contaminants may be required
SIEMENS	H N H	Ammonia (green ammonia)	 Fully zero emissions fuel Can be produced at scale from renewable electricity alone 	 Safety and toxicity challenges Infrastructure challenges at ports Future cost depends on cost of renewable electricity and cost/maturity of electrolyser technology
			Cours	o. https://www.maarsk.com/about/sustainability/roport

Source: https://www.maersk.com/about/sustainability/reports

Creating more value by doing less Natural functionality open many high value markets

History & next movesFrugal, yet logarithmic scaling

USD 20+M raised

Name plate capacity (dry biomass)

University lab Pilot plant (Geleen) Demo plant (Geleen) Commercial plant (Port of Rotterdam)

1 kgpa 1 tpa 1 ktpa 10 ktpa

2017 TRL 3-4 (lab) √ 2020 TRL 5-6 (Pilot) √ 2023 TRL 7-8 (Demo) √ 2026 TRL 9 (Commercial)

Key take-away messages

Residual biomass streams do not stay cheap for long!

3 pillars of future-proof strategy for lignocellulosic biomass valorization

- Maximize yield from feedstock to product(s)
- Low CAPEX/OPEX production process
- High value outlets to support margins over time

A sustainable oil company Creating more value by doing less.

Dr. Panos Kouris, Co-founder & CTO

panos@vertoro.com